

PVG 32 Proportional Valves

Technical Information

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information Contents

Revision History	Table of Revisions					
	Date	Page	Changed	Rev		
	Feb 2010	Various	Handle on drawings	GA		
	Apr 2010	67		GB		
	May 2010	5, 26	Double paragraph deleted, misspelling	GC		
	Jun 2010	69	Code numbers changed	GD		
General	General					
Function	Function					
		, 1	supply			
			n lock			
		-	ressure control			
			alve			
Technical Data	Technical data					
	PVG 32, valve group					
	PVH, hydraulic actuation					
	-	PVM, mechanical actuation				
	PVE, electrical actuation					
	PVE, electrical actuation					
	PVE oil consumption					
	PVPX, electri	cal LS unloadin	g valve	1		
Electrical Actuation	Electrical actua	tion		2		
	Function			2		
Modules and	Modules and co	ode numbers				
Code Numbers						
	PVPV/PVPVM pump side modules					
	PVB, basic modules – without adjustable LS _{A/B} pressure limiting valves					
	PVB, basic modules – with adjustable $LS_{A/B}$ pressure limiting valves					
	PVM, mechanical actuation					
			uation			
	PVMD cover for hydraulic actuation					
	,	,				
	PVMR, cover for friction detent PVMF,cover for mechanical float position					
			alve			
	i i ny ciccule					

© 2010 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss, the Sauer-Danfoss logotype, the Sauer-Danfoss S-icon, PLUS+1™, What really matters is inside® and Know-How in Motion™ are trademarks of the Sauer-Danfoss Group. Frontpage: P301 102, P300 002, P300 010, F301 306, Drawing 157-195. ai

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information Contents

Contents (Continued)

Technical characteristics	Technical characteristics PVP, pump side module PVB, basic module PVLP, shock and suction valve Pressure control spools Characteristics for float position main spools	36 37 44 46
Dimensions	Dimensions	
Lever Positions	Lever positions	53
Hydraulic Systems	Hydraulic systems	54
Electrical Systems	Electrical systems	55
System Safety	System safety	57
Other Operating Conditions	Other operating conditions	62
Module Selection Chart	Module selection chart	64
Order Specification	Order specification	72
Specification Sheet	Specification sheet	76
Specification Sheet, SAE Version	Specification sheet, SAE version	77

Rated Pressure	Product	Rated pressure	
	PVG 32 w. PVS	300 bar [4351 psi]	
	PVG 32 w. PVSI	350 bar [5076 psi]	
	PVG 32 w. PVBZ	210 bar [3046 psi]	
	PVG 32 w. HIC steel	350 bar [5076 psi]	
	PVG 32 w. HIC aluminium	210 bar [3046 psi]	
	PVG 120/32 w. PVS	300 bar [4351 psi]	
	PVG 120/32 w. PVSI	350 bar [5076 psi]	
	PVG 100/32 w. PVS	300 bar [4351 psi]	
	PVG 100/32 w. PVSI	350 bar [5076 psi]	

PVG 32 Proportional Valve Technical Information General

General

Valve system

PVG 32 is a hydraulic load sensing valve designed to give maximum flexibility. From a simple load sensing directional valve, to an advanced electrically controlled load-independent proportional valve.

The PVG 32 module system makes it possible to build up a

valve group to meet requirements precisely. The compact external dimensions of the valve remain unchanged whatever combination is specified.

General features PVG 32

- Load-independent flow control:
 - Oil flow to an individual function is independent of the load pressure of this function
 Oil flow to one function is independent of the load pressure of other functions
- Good regulation characteristics
- Energy-saving
- Up to 10 basic modules per valve group
- Several types of connection threads
- Low weight

PVP – pump side module

- Built-in pressure relief valve
- System pressure up to 350 bar [5075 psi]
- Pressure gauge connection
- Versions:
 - Open centre version for systems with fixed displacement pumps
 - Closed centre version for systems with variable displacement pumps
 - Pilot oil supply for electrical actuator built into the pump side module
 - Versions prepared for electrical LS unloading valve PVPX

PVB, basic module

- Interchangeable spools
- Depending on requirements the basic module can be supplied with:
 Integrated pressure compensator in channel P
 - Check valve in channel P
 - Shock/suction valves
 - LS pressure limiting valves individually adjustable for ports A and B
 - Different spool variants

Actuation modules

The basic module is always fitted with mechanical actuator PVM, which can be combined with the following as required:

- Electrical actuator (11 32 V ===)
 - PVES proportional, super
 - PVEH proportional, high performance
 - PVEA proportional low hysteresis
 - PVEM proportional, medium performance
 - PVEO ON/OFF
- PVMD, cover for mechanical actuation
- PVMR, cover for mechanical detent
- PVMF, cover for mechanical float
- PVH, cover for hydraulic actuation

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information General

Accessories

Remote control units

- Electrical remote control units
 - PVRE, PVRET
 - PVREL
 - PVRES
 - Prof 1
 - Prof 1 CIP
- Hydraulic remote control unit
 - PVRHH

Electronics

- EHF, flow adjustment unit
- EHR, ramp generator
- EHS, speed control
- EHSC, closed loop speed control
- EHA, alarm logic
- EHC, closed loop position control
- PVG CIP
- CIP Configuration Tool

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information Notes

Notes

SAUERPVG 32 Proportional vDANFOSSTechnical Information PVG 32 Proportional Valve Function

PVG 32 Valve Group with **Open Centre PVP** (PVB with Flow Control Spool)

When the pump is started and the main spools in the individual basic modules (11) are in the neutral position, oil flows from the pump, through connection P, across the pressure adjustment spool (6) to tank. The oil flow led across the pressure adjustment spool determines the pump pressure (stand-by pressure).

When one or more of the main spools are actuated, the highest load pressure is fed through the shuttle valve circuit (10) to the spring chamber behind the pressure adjustment spool (6), and completely or partially closes the connection to tank.

Pump pressure is applied to the right-hand side of the pressure adjustment spool (6). The pressure relief valve (1) will open should the load pressure exceed the set value, diverting pump flow back to tank.

In a pressure-compensated basic module the compensator (14) maintains a constant pressure drop across the main spool – both when the load changes and when a module with a higher load pressure is actuated.

With a non pressure-compensated basic module incorporating a load drop check valve (18) in channel P, the check valve prevents return oil flow. The basic module can be supplied without the load drop check valve in channel P for functions with over-centre valves.

The shock valves PVLP (13) with fixed setting and the suction valves PVLA (17) on ports A and B are used for the protection of the individual working function against overload and/or cavitation.

An adjustable LS pressure limiting valve (12) can be built into the A and B ports of pressure-compensated basic modules to limit the pressure from the individual working functions.

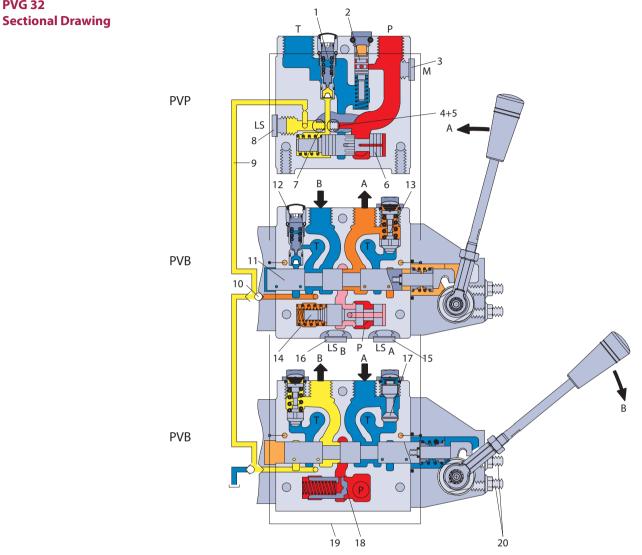
The LS pressure limiting valves save energy compared with the shock valves PVLP:

- With PVLP all the oil flow to the working function will be led across the combined shock and suction valves to tank if the pressure exceeds the fixed setting.
- With LS pressure limiting valves an oil flow of about 2 l/min [0.5 US gal/min] will be led across the LS pressure limiting valve to tank if the pressure exceeds the valve setting.

In the closed centre version an orifice (5) and a plug (7) have been fitted instead of the plug (4). This means that the pressure adjustment spool (6) will only open to tank when the pressure in channel P exceeds the set value of the pressure relief valve (1).

> In load sensing systems the load pressure is led to the pump regulator via the LS connection (8).

In the neutral position the pump control sets the displacement so that leakage in the system is compensated for, to maintain the set stand-by pressure. When a main spool is actuated the pump regulator will adjust the displacement so that the set differential pressure between P and LS is maintained.


The pressure relief valve (1) in PVP should be set at a pressure of approx. 30 bar [435 psi] above maximum system pressure (set on the pump or external pressure relief valve).

PVG 32 Valve Group with **Closed Centre PVP** (PVB with Flow Control Spool)

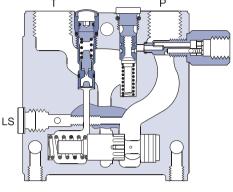
PVG 32

PVG 32 Proportional Valve **Technical Information** Function

V310106.A

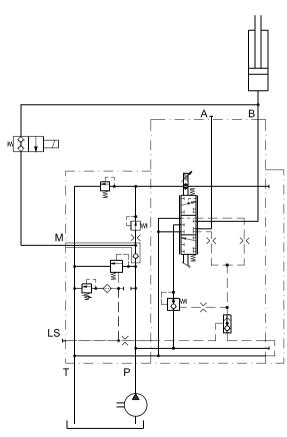
- 1. Pressure relief valve
- 2. Pressure reduction valve for pilot oil supply
- 3. Pressure gauge connection
- 4. Plug, open centre
- 5. Orifice, closed centre
- 6. Pressure adjustment spool
- 7. Plug, closed centre
- 8. LS connection
- 9. LS signal
- 10. Shuttle valve

- 11. Main spool
- 12. LS pressure limiting valve
- 13. Shock and suction valve, PVLP
- 14. Pressure compensator
- 15. LS connection, port A
- 16. LS connection, port B
- 17. Suction valve, PVLA
- 18. Load drop check valve
- 19. Pilot oil supply for PVE
- 20. Max. oil flow adjustment screws for ports A and B


PVPC, Plug for External Pilot Oil Supply

PVPC with check valve for open centre PVP

PVPC with check valve is used in systems where it is necessary to operate the PVG 32 valve by means of the electrical remote control without pump flow.


When the external solenoid valve is opened, oil from the pressure side of the cylinder is fed via the PVPC through the pressure reducing valve to act as the pilot supply for the electrical actuators.

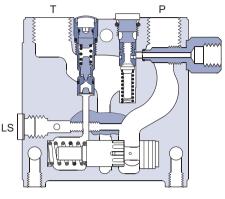
This means that a load can be lowered by means of the remote control lever without

157-114.11

starting the pump. The built-in check valve prevents the oil from flowing via the pressure adjustment spool to tank. With the pump functioning normally the external solenoid valve is closed to ensure that the load is not lowered due to the pilot supply oil flow requirement of approximately 1 l/min [0.25 US gal/min].

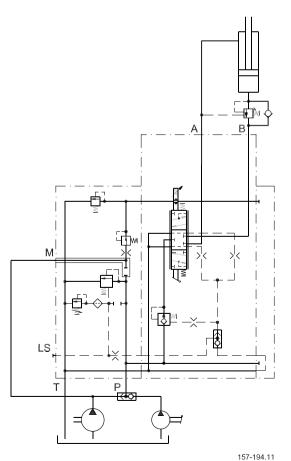
157-116.10

With closed centre PVP the external pilot oil supply can be connected to the pressure gauge connection without the use of a PVPC plug.



PVPC, Plug for External Pilot Oil Supply

PVPC without check valve for open or closed centre PVP

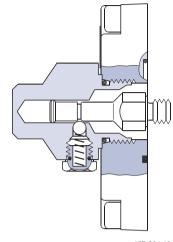

PVPC without check valve is used in systems where it is necessary to supply the PVG 32 valve with oil from a manually operated emergency pump without directing oil flow to the pilot oil supply (oil consumption about 1 l/min) [0.25 US gal/min].

When the main pump is working normally, the oil is directed through the PVPC plug via the pressure reduction valve to the electrical actuators.

157-193.11

When the main pump flow fails, the external shuttle valve ensures that the oil flow from the manually operated emergency pump is used to pilot open the over centre valve and lower the load. The load can only be lowered using the mechanical operating lever of the PVG 32 valve.

.....

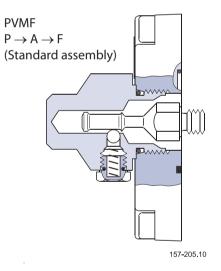

PVMR, Friction Detent

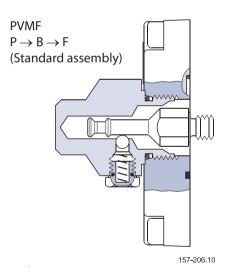
PVMR, Friction Detent

The friction detent PVMR allows the directional spool to be held in any position, resulting in infinitely variable, reversible, pressure compensated flow. This can be sustained indefinitely with-out having to continue to hold the mechanical lever.

Please note:

PVMR should only be used together with PVB basic modules with pressure compensator. **PVMR**

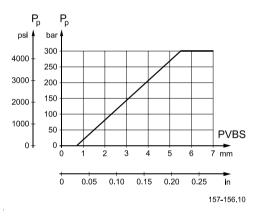



157-204.10

PVMF, Mechanical Float Position Lock

PVMF, Mechanical Float Position Lock

This allows the float spool to be held in the float position after release of the mechanical handle.



PVBS, When using standard flow control spools, the pump pressure is determined by the **Main Spools for Flow** highest load pressure. This is done either via the pressure adjustment spool in open **Control (Standard)** centre PVP (fixed displacement pumps) or via the pump regulator (variable displacement pumps). In this way the pump pressure will always correspond to the load pressure plus the stand-by pressure of the pressure adjustment spool or the pump regulator. This will normally give optimum and stable adjustment of the oil flow. PVBS, PVBS main spools with linear characteristic have less dead band than standard spools **Main Spools** and a completely proportional ratio between control signal and oil flow in the range for Flow Control beyond the dead band. PVBS with linear characteristic must never be used together with PVEM electrical actuators. The interaction between the small dead band of the (with Linear Characteristic) spools and the hysteresis of the PVEM actuator of 20% involves a risk of building up a LS pressure in neutral position.

PVBS, Main Spools for Pressure Control

In a few systems load sensing pump pressure may result in unstable adjustment of the oil flow and a tendency towards system hunting. This may be the case with working functions that have a large moment of inertia or over-centre valves. In such systems main spools for pressure control can be advantageous.

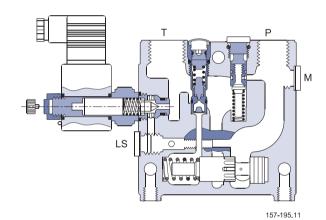
The spools are designed in such a way that the pump pressure is controlled by the spool travel. The main spool must be displaced until the pump pressure just

exceeds the load pressure before the working function is applied. If the main spool is held in this position, the pump pressure will remain constant – even if the load pressure changes – giving a stable system.

The use of pressure control spools, however, also means that

- the oil flow is load dependent
- the dead band is load dependent
- the pump pressure can exceed the load pressure by more than is usual.

Due to these factors it is recommended that pressure control spools are only used when it is known for certain that problems with stability will arise – or already have arisen.



PVPX, Electrical LS Unloading Valve PVPX is a solenoid LS unloading valve. PVPX is fitted into the pump side module enabling a connection to be made between the LS and the tank lines. Thus the LS signal can be

relieved to tank by means of an electric signal.

For a PVP pump side module in open centre version the relief to tank of the LS signal means that the pressure in the system is reduced to the sum of the tank port pressure plus the neutral flow pressure for the pump side module.

For a PVP pump side module in closed centre version the relief to tank of the LS signal means that the pressure is reduced to the sum of the tank port pressure for the pump side module plus the stand-by pressure of the pump.

AUER PVG 32 Proportional v ANFOSS Technical Information PVG 32 Proportional Valve **Technical Data**

PVG 32 Valve Group The technical data for PVG 32 and PVPX are typical measured results. For the hydraulic system a mineral based hydraulic oil with a viscosity of 21 mm²/s [102 SUS] and a temperature of 50°C [122°F] was used.

•		1	1
	Port P continuous	350 bar ¹⁾	[5075 psi]
	Port P intermittent ⁵⁾	400 bar	[5800 psi]
Max. pressure	Port A/B continous	350 bar	[5075 psi]
	Port A/B intermittent ⁵⁾	420 bar	[6090 psi]
	Port T, static/dynamic	25 / 40 bar	[365/580 psi]
Oil flow rated	Port P	140/230 l/min ^{3) 4)}	[37/61 US gal/min] ^{3) 4)}
(See characteristics	Port A/B, with press.comp.	100 l/min ²⁾	[26.4 US gal/min] ²⁾
page 31 - 36)	Port A/B witout press.comp.	125 l/min	[33 US gal/min]
Spool travel, standard		± 7 mm	[± 0.28 in]
Spool travel,	Proportional range	± 4.8 mm	± 0.19 in]
float position, spool	Float position	± 8 mm	[± 0.32 in]
Dead band,	Standard	±1.5 mm	[± 0.06 in]
flow control spools	Linear characteristic	± 0.8 mm	[± 0.03 in]
Max. internal leakage at 100 bar [2175 psi] and	$A/B \rightarrow T$ without shock valve	20 cm ³ /min	[1.85 in ³ /min]
21 mm2/s [102 SUS]	$A/B \rightarrow T$ with shock valve	25 cm ³ /min	[2.15 in ³ /min]
	Recommended temperature	$30 \rightarrow 60 \text{ °XC}$	$[86 \rightarrow 140^{\circ}F]$
Oil temperature (inlet temperature)	Min. temperature	-30°C	[-22°F]
(inier temperature)	Max. temperature	+90°C	[194°F]
Ambient temperature		-30 → 60 °XC	[-22 → 140°F]
	Operating range	12 - 75 mm ² /s	[65 - 347 SUS]
Oil viscosity	Min. viscosity	4 mm ² /s	[39 SUS]
	Max. viscosity	460 mm ² /s	[2128 SUS]
Filtration (See page 55)	Max. contamination (ISO 4406)	23/19/16	23/19/16
Oil consumtion in pilot oil p	ressure reduction valve	1 l/min	[0.25 US gal/min]

1) With PVSI end plate. With PVS end plate max. 300 bar [4351 psi].

2) For 130 l/min contact technical Sales Organization for Sauer-Danfoss

3) In open circuit systems with short P-hoses/tubes, attention should be paid to pressure peaks at flows >100 l/min. [26.4 US gal/min]

4) For system with Mid inlet PVPVM, see page 28

5) Intermittent pressure at max. 250,000 cycles of full PVG life time cycles, with PVSI end plate. The maximum intermittent pressure at max. 250,000 cycles stresses the need to confirm application duty cycle before proceeding with specification. For further information contact technical Sales Organization for Sauer-Danfoss.

PVH, **Hydraulic Actuation**

Regulation range	5 - 15 bar	[75 - 220 psi]
Max. pilot pressure	30 bar	[435 psi]
Max. pressure on port T ¹⁾	10 bar	[145 psi]

1) The PVRHH remote control lever should be connected direct to tank.

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information **Technical Data**

PVM, **Mechanical Actuation**

Regulation range	e, control lever		± 19.5°		
Regulation range Proportional ran		Proportional range	±13	3.4°	
		Float position	22.	.3°	
			Neutral position	Max. spool travel	
Operating force		PVM + PVMD	2.2 ± 0.2 N·m [5.0 ±1.8 lbf·in]	2.8 ± 0.2 N·m [6.3 ±1.8 lbf·in]	
		PVM + PVE 1)	2.2 ± 0.2 N⋅m [5.0 ±1.8 lbf⋅in]	2.8 ± 0.2 N·m [6.3 ±1.8 lbf·in]	
		PVM + PVH	2.7 ±0.2 N·m [23.9 ±1.8 lbf·in]	7.1 ± 0.2 N·m [62.8 ±1.8 lbf·in]	
	PVM + PVMR	Spool displacement from neutral position		17 N·m [3.8 lbf·in]	
	PVIVI + PVIVIK	Spool displacement from any other position		8.5 N·m [73.3 lbf·in]	
Operating force		Spool displacement from neutral position		22 N·m [5.0 lbf·in]	
	PVM+PVMF	Spool displacement into	float position	60 N·m [13.5 lbf·in]	
		Spool displacement away from float position		28 N·m [6.3 lbf·in]	
Control lever positions, see page 51		No	2 × 6		

¹⁾ PVE without voltage

PVE Technical Data

The following technical data are from typical test results. For the hydraulic system a mineral based hydraulic oil with a viscosity of 21 mm2/s [102 SUS] and a temperature of 50° C [122° F] were used.

PVEO and PVEM

PVEO and PVEM		d PVEM	
	rated	12 V DC	24 V DC
Supply voltage U _{DC}	range	11 V to 15 V	22 V to 30 V
	max. ripple	5%	
Current consumption at rated voltage	0.65 A @ 12 V	0.33 A @ 24 V	
	neutral	0.5 x UDC	
Signal voltage (PVEM)	A-port \leftrightarrow B-port	0.25 • UDC to 0.75 • UDC	
Signal current at rated voltage (PVEM)		0.25 mA	0.50 mA
Input impedance in relation to 0.5 • UDC		12 ΚΩ	
Power consumption		8 W	

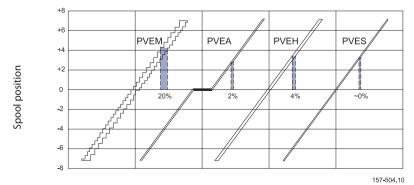
Reaction time PVEO and PVEM

Supply voltage	Function		PVEO ON/OFF s	PVEO-R ON/OFF s	PVEM Prop. medium s
Disconnected by		max.	0.235	0.410	0.700
means	Reaction time from neutral	rated	0.180	0.350	0.450
of neutral switch	position to max. spool travel	min.	0.120	0.250	0.230
Disconnected by		max.	0.175	0.330	0.175
means	Reaction time from max. spool travel to neutral position	rated	0.090	0.270	0.090
of neutral switch		min.	0.065	0.250	0.065
		max.	-	-	0.700
Constant voltage	Reaction time from neutral position to max. spool position	rated	-	-	0.450
	position to max. spool position	min.	-	-	0.230
		max.	-	-	0.700
Constant voltage	Reaction time from max. spool travel to neutral position	rated	-	-	0.450
		min.	-	-	0.230
Hysteresis ¹⁾		rated	-	-	20%

¹⁾Hysteresis is indicated at rated voltage and f = 0.02 Hz for one cycle (one cycle = neutral ->full A -> full B -> neutral.

PVG 32 Proportional Valve Technical Information Technical Data

PVE Technical Data (Continued)


PVEA, PVEH and PVES

			PVEA, PVEH and PVES		
		rated	11 V to	o 32 V	
Supply voltage U _{DC}		range	11 V to	o 32 V	
		max. ripple	5%	⁄o	
Current consumption at rated voltage		PVEH/PVES (PVEA)	0.57 (0.33) A @ 12 V	0.3 (0.17) A @ 24 V	
Signal voltage		neutral	0.5 x UDC		
Signal voltage		A-port \leftrightarrow B-port	0.25 • UDC to 0.75 • UDC		
Signal current at rat	ed voltage		0.25 mA to 0.70 mA		
Input impedance in	relation to 0.5 • UDC		12 ΚΩ		
Input capacitor			100 ηF		
Power consumption	า	PVEH/PVES (PVEA)	7 (3.5) W		
		Max. load	100 mA	60 mA	
(PVEH/PVES)	Active	Reaction time at fault	500 ms (PVE	A: 750 ms)	
	Passive	Reaction time at fault	250 ms (PVEA: 750 ms)		

Reaction time

Supply voltage	Function		PVEA Prop. fine s	PVEH Prop. high s	PVES Prop. super s
Disconnected by		max.	0.500	0.230	0.230
means	Reaction time from neutral	rated	0.320	0.150	0.150
of neutral switch	position to max. spool travel	min.	0.250	0.120	0.120
Disconnected by		max.	0.550	0.175	0.175
means	Reaction time from max. spool	rated	0.400	0.090	0.090
of neutral switch	travel to neutral position	min.	0.300	0.065	0.065
		max.	0.500	0.200	0.200
Constant voltage	Reaction time from neutral position to max. spool travel	rated	0.320	0.120	0.120
		min.	0.250	0.050	0.050
	Poaction time from may speed	max.	0.250	0.100	0.100
Constant voltage	Reaction time from max. spool	rated	0.200	0.090	0.090
	travel to neutral position	min.	0.150	0.065	0.065

 $^{1)}$ Hysteresis is indicated at rated voltage and f = 0.02 Hz for one cycle (one cycle = neutral ->full A -> full B -> neutral.

520L0344 • Rev GD • Jun 2010

SAUER
DANFOSSPVG 32 Proportional ValveTechnical Information **Technical Data**

Technical Data (Continued)

Oil consumption PVEO and PVEM

Supply voltage	Function		PVEO ON/OFF	PVEM Prop. medium
Without voltage	Pilot oil flow per PVE	neutral	0 l/min [0 US gal/min]	0 l/min [0 US gal/min]
	flow per	locked	0.1 l/min [0.026 US gal/min]	0.1 l/min [0.026 US gal/min]
With voltage		one actuation (neutral \rightarrow max.)	0.002 l [0.053 US gal]	0.002 l [0.053 US gal]
5		continuous actuations (neutral \rightarrow max.)	0.7 l/min [0.185 US gal/min]	0.5 l/min [0.132 US gal/min]

Oil consumption PVEA, PVEH and PVES

Supply voltage	Function		PVEA Prop. fine	PVEH Prop. high	PVES Prop. super
Without voltage	Pilot oil flow per PVE	neutral	0 l/min [0 US gal/min]	0 l/min [0 US gal/min]	0.3 l/min [0.106 US gal/min]
		locked	0.4 l/min [0.132 US gal/min]	0.1 l/min [0.026 US gal/min]	0.1 l/min [0.053 US gal/min]
With voltage	Pilot oil flow per PVE	one actuation (neutral \rightarrow max.)	0.002 l [0.053 US gal]	0.002 l [0.053 US gal]	0.002 l [0.053 US gal]
		continuous actuations	1.0 l/min [0.200 US gal/min]	0.7 l/min [0.290 US gal/min]	0.8 l/min [0.290 US gal/min]

Oil viscosity

Oil viscosity	range	12 - 75 mm ² /s [65 - 347 SUS]
	min.	4 mm ² /s [39 SUS]
	max.	460 mm ² /s [2128 SUS]

Note: Max. start up viscosity 2500 mm²/s

Filtering

	Max. allowed degree of contamination (ISO 4406, 1999 version): 23/19/16
--	---

Oil temperature

	Rec. range	30 - 60°C [86 -140°F]
Oil -temperature	min.	-30°C [-22°F]
lemperature	max.	90°C [194°F]

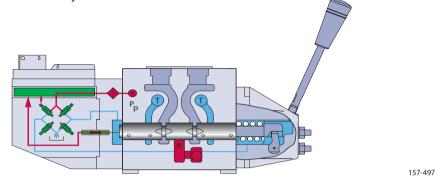
Ambient temperature

Ambiant	
temperature	-30° → +60°C [-22° → +140°F]
range Rec.	

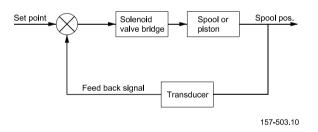
Ē

PVG 32 Proportional Valve Technical Information Technical Data

PVPX, Electrical LS Unloading Valve


Max. operating pressure) bar 5 psi]	
Enclosure to IEC 529			65	
Max. pressure drop at an	oil flow of 0.10 l/min. [2.6 US gal/min]		oar psi]	
	Recommended temperature		60°C 140°F]	
Oil temperature (inlet temperature)	Min. temperature	-	0°C 2°F]	
	Max. temperature)°C 4°F]	
Max. coil surface temperature			155°C [311°F]	
Ambient temperature			-30 to 60°C [-22 to 140°F]	
	Operating range		5 mm²/s 47 SUS]	
Oil viscosity	Min. viscosity		m²/s SUS]	
	Max. viscosity		nm ² /s 3 SUS]	
Response time for LS pre	ssure relief	300) ms	
Rated voltage		12 V	24 V	
Max. premissible deviation from rated supply voltage		± 1	0%	
Current consuption at	at 22°C [72°F] coil temperature	1.55 A	0.78 A	
rated voltage	at 110°C [230°F] coil temperature	1.00 A	0.50 A	
Power consumption	at 22°C [72°F] coil temperature	19 W	19 W	
	at 110°C [230°F] coil temperature	12 W	12 W	

PVG 32 Proportional Valve Technical Information Electrical Actuation


Function

The philosophy of Sauer-Danfoss electro hydraulic actuation, type PVE, is integration of electronics, sensors and actuators into a single unit that interfaces directly to the proportional valve body.

Closed loop control

All the proportional actuators feature an integrated feedback transducer that measures spool movement in relation to the input signal, and by means of a solenoid valve bridge, controls the direction, velocity and position of the main spool of the valve. The integrated electronics compensate for flow forces on the spool, internal leakage, changes in oil viscosity, pilot pressure, etc. This results in lower hysteresis and better resolution. Furthermore the electronics enable built in safety like fault monitoring, directional indication and LED light indication.

Principle

In principle the input signal (set-point signal) determines the level of pilot pressure which moves the main spool. The position of the main spool is sensed in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the set-point signal and feed-back signal actuates the solenoid valves. The solenoid valves are actuated so that hydraulic pilot pressure drives the main spool into the correct position.

Inductive transducer, LVDT

(Linear Variable Differential Transformer). When the main spool is moved, a voltage is in-duced proportional to the spool position. The use of LVDT gives contact-free monitoring of the main spool position. This means an extra-long working life and no limitation as regards the type of hydraulic fluid used. In addition, LVDT gives a precise position signal of high resolution.

Integrated pulse width modulation

Positioning of the main spool in PVEA/PVEH/PVES is based on the pulse width modulation principle. As soon as the main spool reaches the required position, modulation stops and the spool is locked in position.

PVG 32 Proportional Valve Technical Information Electrical Actuation

ON/Off Actuation

With electrical ON/OFF actuation the main spool is moved from neutral to maximum stroke when power is connected.

PVEO, ON/OFF

Main features of PVEO:

- Compact
- Robust operation
- With Hirschmann or AMP connector
- Low electrical power

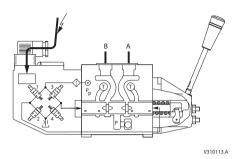
PVEO-R, ON/OFF with hydraulic ramp

Like PVEO, but for applications where longer reaction time is needed.

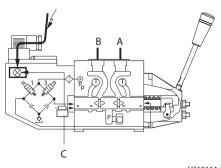
Proportional Actuation

With electrical proportional actuation the main spool position is adjusted so that it corresponds to an electrical signal – e.g. from a remote control unit.

PVEM, proportional medium


PVEM versions are recommended where there is a requirement for medium resolution proportional control and where reaction and hysteresis are not critical. Main features of PVEM:

- ON-OFF modulated
- Inductive transducer
- Medium hysteresis
- With Hirschmann connector only
- Low electrical power
- No set-up procedure


PVEA, proportional fine

PVEA versions are recommended where among the requirements are fault monitoring, low hysteresis, high resolution but where the reaction time is not critical. Main features of PVEA:

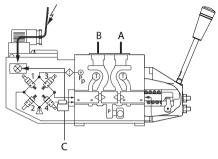
- Inductive transducer
- Integrated pulse width modulation
- AMP connector only
- As option with directional indicator (DI)
- Fault monitoring with transistor output for signal source.
- Low electrical power
- No set-up procedure

V310114.A

SAUER DANFOSS PVG 32 Proportional v Technical Information PVG 32 Proportional Valve **Electrical Actuation**

Proportional Actuation (Continued)

PVEH, proportional high


Performance like PVEA but with fast reaction time. Main features of PVEH:

- Inductive transducer •
- Integrated pulse width modulation •
- Low hysteresis •
- Fast reaction time
- Hirschmann or AMP connector •
- As option with directional indicator (DI)
- Fault monitoring with transistor output for • signal source
- Low electrical power •
- No set-up procedure •

PVES, proportional super

PVES versions are recommended for control systems requiring very low hysteresis to obtain a high resolution. For other technical data: see PVEH

Hirschmann or AMP connector •

V310112.A

SAUER PVG 32 Proportional V DANFOSS Technical Information PVG 32 Proportional Valve Fault Monitoring System

The Fault Monitoring System

A fault monitoring system is provided in all PVEA, PVEH and PVES modules. The system is available in two versions:

- The active fault monitoring type, which provides a warning signal, deactivates the solenoid valves and drives the spool in neutral.
- The passive fault monitoring type, which provides a warning signal only.

Both active and passive fault monitoring systems are triggered by three main events:

1. Input signal monitoring

The input signal voltage is continuously monitored. The permissible range is between 15% and 85% of the supply voltage. Outside this range the section will switch into an active error state.

2. Transducer supervision

If one of the wires to the LVDT sensor is broken or short-circuited, the section will switch into an active error state.

3. Supervision of the closed loop

The actual position must always correspond to the demanded position (input signal). If the actual spool position is further than the demanded spool position (>12%, PVEA: >25%), the system detects an error and will switch into an active error state. On the other hand, a situation where the actual position is closer to neutral than that demanded will not cause an error state. This situation is considered "in control". When an active error state occurs, the fault monitoring logic will be triggered:

Active fault monitoring

- A delay of 500 ms (PVEA: 750 ms) before anything happens.
- The solenoid valve bridge will be disabled and all solenoid valves will be released.
- An alarm signal is sent out through the appropriate pin connection.
- This state is memorized and continues until the system is actively reset (by turning off the supply voltage).

Passive fault monitoring

- A delay of 250 ms (PVEA: 750 ms) before anything happens.
- The solenoid valve bridge will not be disabled but still control the main spool position.
- An alarm signal is sent out through the appropriate pin connection.
- This state is not memorized. When the erroneous state disappears, the alarm signal will turn to passive again. However, the signal will always be active for a minimum of 100 ms when triggered.

To prevent the electronics from going into an undefined state, a general supervision of the power supply and the internal clock frequency is made. This function applies to PVEA, PVEH and PVES - and will not activate fault monitoring:

1. High supply voltage

The solenoid valves are disabled when the supply voltage exceeds 36 V, and the main spool will return/stay in neutral.

2. Low supply voltage:

The solenoid valves are disabled when the supply voltage falls below 8.5 V, and the main spool will return/stay in neutral.

PVG 32 Proportional Valve **SAUER** PVG 32 Proportional V **DANFOSS** Technical Information **Electrical Actuation**

The Fault Monitoring System (Continued)

3. Internal clock

The solenoid valves are disabled when the internal clock frequency fails, and the main spool will return/stay in neutral.

A WARNING

It's up to the customer to decide on the required degree of safety for the system (see PVE series 4 catalogue DKMH.PK.570.A1.02, page 19).

Note:

1. Different degrees of safety are described on pages 56 to 59.

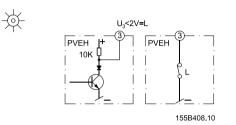
2. The fault monitoring does not work if the supply voltage to PVEA/PVEH/PVES is cut off – for example by a neutral position switch (see page 56).

3. When using PVEA/PVEH/PVES with passive fault monitoring it's up to the customer to decide on the required degree of safety for the system (see page 56).

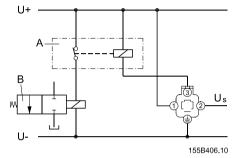
Туре	Fault monito- ring	Delay before error out	Error mode	Error output status	Fault output on PVE ¹⁾	LED light	Memory (reset needed)
PVEO	No fault	-	-	-	-	-	_
PVEM	monitoring						
			No fault	Low	< 2 V	Green	-
	Active	500 ms	Input signal faults			Flashing red	
	Active	(PVEA: 750ms)	Transducer (LVDT)	High	~U _{DC}	Constant red	Yes
PVEA PVEH			Close loop fault			Constant red	
PVEN			No fault	Low	< 2 V	Green	-
1 125	Passive	ve (PVEA: 750ms) Input signal faults (PVEA: 750ms) Transducer (LVDT) High ~U _{DC}		Flashing red			
	rassive		Transducer (LVDT)	High	~U _{DC}	Constant red	No
			Close loop fault			Constant red	

¹⁾ Measured between fault output pin and ground

Fault Monitoring Specification



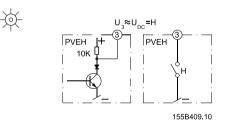
PVG 32 Proportional Valve Technical Information Electrical Actuation

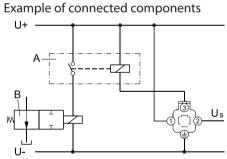

PVEA/PVEH/PVES, Connection to Fault Monitoring Output

Green

Transistor output function

Example of connected components


A: External relay B: Solenoid valve (e.g. PVPX)


Fault

Normal

Red

Transistor output function

155B407.10

A: External relay B: Solenoid valve (e.g. PVPX)

Via an external relay the pin pos. 3 can be connected to a solenoid valve which will relieve the LS-signal to tank, e.g. PVPX.

Other connections possible:

- a solenoid valve to relieve the pump oil flow
- a signal lamp, an alarm horn
- pump cut-out, etc.

520L0344 • Rev GD • Jun 2010

PVG 32 Proportional Valve Technical Information Modules and Code Numbers

PVP, Pump Side Moduls

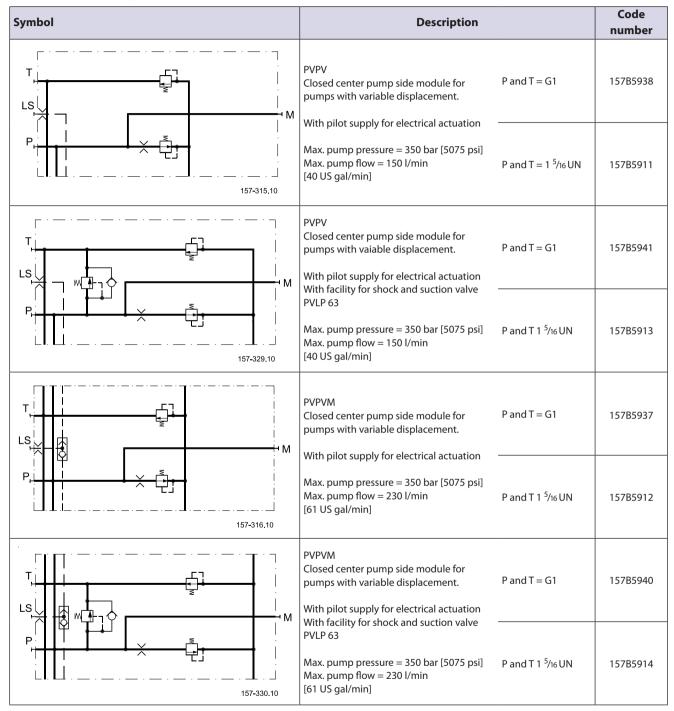
Connection: $P = G \frac{1}{2}$; 14 mm deep or G $\frac{3}{4}$; 16 mm deep. LS/M = G $\frac{1}{4}$; 12 mm deep; T = G $\frac{3}{4}$; 16 mm deep.

 $P = \frac{7}{8}$ in - 14; 0.65 in deep or 1 $\frac{1}{16}$ in - 12; 0.75 in deep. LS/M = $\frac{12}{2}$ in - 20; 0.47 in deep. T = 1 $\frac{1}{16}$ in - 12; 0.75 in deep.

SAUER PVG 32 Proportional V Technical Information PVG 32 Proportional Valve Modules and Code Numbers

PVP, Pump side Moduls

Symbol	Description		Code number
	Open centre pump side module for pumps with fixed displacement.		
	For mechanical actuated valves. Connection for LS unloading	$P = G \frac{3}{4}$ T = G $\frac{3}{4}$	157B5102
L.L	valve, PVPX		
	Closed centre pump side module for pumps with vaiable displacement. For mechanical actuated valves. Connection for LS unloading valve, PVPX	$P = G \frac{3}{4}$ T = G $\frac{3}{4}$	157B5103
	Open centre pump side module for pumps with fixed displacement.	P = G ¾ T = G ¾	157B5180
	With pilot oil supply for electrical actuation and connection for pilot oil pressure	P = 1 1/16 in - 12 T = 1 1/16 in - 12	157B5380
	Closed centre pump side module pumps with variable displacement.	P = G ³ / ₄ T = G ³ / ₄	157B5181
	With pilot oil supply for electrical actuation and connection for pilot oil pressure	P = 1 1/16 in - 12 T = 1 1/16 in - 12	157B5381
	Open centre pump side module for pumps with fixed displacement.	P = G ³ / ₄ T = G ³ / ₄	157B5190
	With pilot oil supply for hydraulic actuation and connection for pilot oil pressure	P = 1 1/16 in - 12 T = 1 1/16 in - 12	157B5390
	Closed centre pump side module pumps with variable displacement	P = G ³ / ₄ T = G ³ / ₄	157B5191
	With pilot oil supply for hydraulic actuation and connection for pilot oil pressure	P = 1 1/16 in - 12 T = 1 1/16 in - 12	157B5391


Connection: $P = G^{1}/_{2}$; 14 mm deep or $G^{3}/_{4}$; 16 mm deep. LS/M = $G^{1}/_{4}$; 12 mm deep; T = $G^{3}/_{4}$; 16 mm deep.

 $P = \frac{7}{8}$ in - 14; 0.65 in deep or 1 $\frac{1}{16}$ in - 12; 0.75 in deep. LS/M = $\frac{1}{2}$ in - 20; 0.47 in deep. T = 1 $\frac{1}{16}$ in - 12; 0.75 in deep.

SAUER DANFOSS Technical Information PVG 32 Proportional Valve Modules and Code Numbers

PVPV and PVPVM, Pump Side Modules

MA og LS : G¹/₄ [⁹/16 - 18 UNF]

SAUER PVG 32 Proportional V Technical Information PVG 32 Proportional Valve Modules and Code Numbers

PVB, Basic Modules – Without Adjustable LS_{A/B} Pressure Limiting Valves

Symbol	Description		Code n No facilities for shock valves A/B	umber Facilities for shock valves A/B
	Without load drop check valve and pressure compensator Can be used where	G 1/2 14 mm deep	157B6000	157B6030
B 157-19.10	load holding valves prevent oil from flowing back through channel P.	7/8 in -14 0.65 in deep	157B6400	157B6430
	Load drop check valve	G 1/2 14 mm deep	157B6100	157B6130
B 157-20.10		7/8 in -14 0.65 in deep	157B6500	157B6530
	Load drop check valve. LS _{A/B} shuttle valve.	G 1/2 14 mm deep	-	157B6136
В 157-196.10	To be used with float position spools.	7/8 in -14 0.65 in deep	-	157B6536
	With non-damped compensator valve	G 1/2 14 mm deep	157B6200	157B6230
В		7/8 in -14 0.65 in deep	157B6600	157B6630

PVB, Basic Modules - Without Adjustable LS_{a/b} Pressure Limiting Valves

Symbol	Description		Code number	
			No facilities for shock valves A/B	Facilities for shock valves A/B
	With damped	G 1/2 14 mm deep	157B6206	157B6236
Балана и страна и с	compensator valve	7/8 in -14 0.65 in deep	-	-

PVB, Basic Modules - With Adjustable LS_{a/b} Pressure Limiting Valves

	Description		Code n	umber
Symbol			No facilities for shock valves A/B	Facilities for shock valves A/B
	A valves External LS connection	G 1/2 14 mm deep	157B6203	157B6233
		7/8 in -14 0.65 in deep	157B6603	157B6633
	Damped compensator valve. Adjustable LSA/B pressure limiting	G 1/2 14 mm deep	157B6208	157B6238
LS B B B B B B B B B B B B B B B B B B B	port A/B		-	-

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information Modules and Code Numbers

PVM, Mechanical Actuation

Symbol	Description		Code number with stop screws w/o stop screw	
	PVM, Standard, spring centered Individual oil flow adjustment to ports A and B	22.5° 37.5°	157B3171 157B3172	157B3191 157B3192
	Without actuation lever and base. Shaft for mounting of actuation lever		157B3173	157B3193
	PVM, as standard, witout actuation lever. With base for mounting of actuation lever	22.5° 37.5°	157B3175 157B3174	157B3195 157B3194
157-10.10	PVM, Standard, spring. Individual oil flow adjustment to ports A and B. (Anodized)	22.5°	157B3184	-

PVMD, Cover for Mechanical Actuation

Symbol	Description	Code number
	PVMD, Cover for purely mechanically operated valve	157B0001

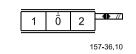
PVH, Hydraulic Actuation

Symbol	Description		Code number
	PVH,	G 1/4, 12 mm deep	157B0008
157-199.10	Cover for hydraulic remote control	9/16 - 18 UNF; 0.54 in deep	157B0007

PVMR, Friction Detent

Symbol	Description	Code number
	PVMR, Friction detent	157B0004
157-210.10		

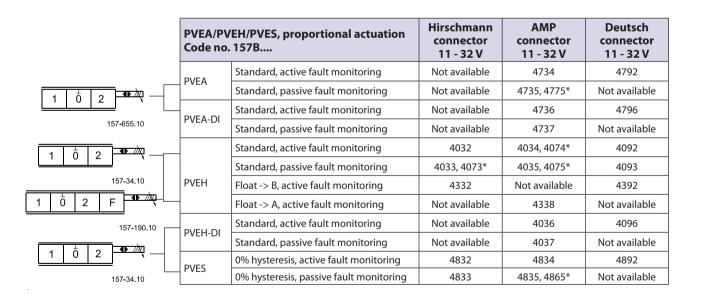
PVMF, Mechanical Float Position


Symbol	Description	Code number
M 1 0 2 F M 157-208.10	PVMF	
W F 1 0 2 W 157-209.10	Mechanical float position lock	157B0005


PVG 32 Proportional Valve **Technical Information** Modules and Code Numbers

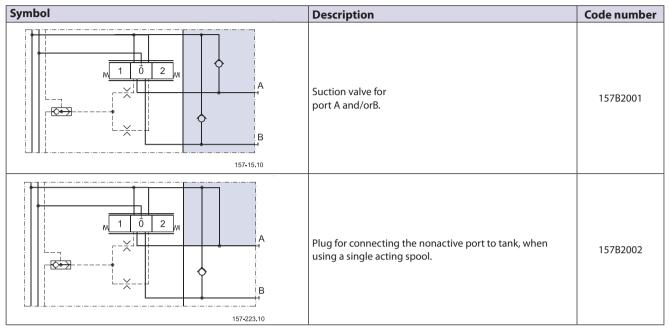
PVE for PVG 32

Code Numbers for Use on PVG 32 157B....



PVEO, ON/OFF actuation Code no. 157B		Hirsch conn	imann ector	AN conn		Deutsch connector	
		12 V	24 V	12 V	24 V	12 V	24 V
	ON/OFF	4216	4228	4901	4902	4291	4292
PVEO	ON/OFF with ramp	4217	4229	4903	4904	-	-
PVEO	ON/OFF anodized	4266	4268	not available	4272	-	-

157-189.10


PVEM, proportional actuation Code no. 157B		Hirschmann connector				
		12 V	24 V			
PVEM	Standard	4116	4128			
	Float -> B	4416	4428			

SAUER PVG 32 Proportional Valve Technical Information Modules and Code Numbers

PVLA, Suction Valve (fitted in PVB)

PVLP, Shock and Suction Valve (Fitted in PVB)

Symbol	Description	Set bar	ting [psi]	Code number
		32	460	157B2032
		50	725	157B2050
		63	914	157B2063
		80	1160	157B2080
		100	1450	157B2100
		125	1813	157B2125
		140	2031	157B2140
		150	2175	157B2150
	Shock and suction valve	160	2320	157B2160
		175	2538	157B2175
	for port A and/or B. (Not adjustable)	190	2755	157B2190
	(NOT adjustable)	210	3045	157B2210
		230	3335	157B2230
		240	3480	157B2240
i_J, J, L,		250	3625	157B2250
157-18.10		265	3843	157B2265
		280	4061	157B2280
		300	4351	157B2300
		320	4641	157B2320
		350	5075	157B2350

PVS, End Plate

Symbol		Description		Code number
	- <u>-</u>	PVS, without active elements.		157B2000
	V310062.A	No connections		157B2020
	- <u>-</u>	PVS, without active elements.	G 1/8 10 mm deep	157B2011
	V310063.A	Max. intermittend LX pressure 250 bar [3625 psi]	3/8 in - 24; 0,39 in deep	157B2021
	- -	PVSI, without active elements		157B2014
	V310062.A	Without connections.		157B2004
	- <u>-</u>	PVSI, without active elements LX connections.	G 1/4 10 mm deep	157B2015
L - L	V310063.A	Max. intermittend LX pressure: 350 bar [5075 psi]	1/2 in - 20; 0,47 in deep	157b2005

PVAS, Assembly Kit

Code no, 157B	0	1	2	3	4	5	6	7	8	9	10	11	12
PVB's	8000	8001	8002	8003	8004	8005	8006	8007	8008	8009	8010	8061	8062
PVB + PVPVM	-	8021	8022	8023	8024	8025	8026	8027	8028	8029	8030	8081	8082
Weight kg [lb]	0.1[0.2]	0.15 [0.3]	0.25 [0.6]	0.30 [0.7]	0.40 [0.9]	0.45 [1.0]	0.50 [1.1]	0.60 [1.3]	0.65 [1.4]	0.70 [1.6]	0.80 [1.7]	0.85 [1.8]	0.9 [2.0]

PVAS, Assembly Kit for PVPVM

Description	Code number 157B									
Description	1 PVB	2 PVB	3 PVB	4 PVB	5 PVB	6 PVB	7 PVB	8 PVB	9 PVB	10 PVB
Tie bolts and seals	8021	8022	8023	8024	8025	8026	8027	8028	8029	8030

*) for one PVB on PVGI (combination 120 / 32)

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information Modules and Code Numbers

PVPX, Electrical LS Unloaded Valve

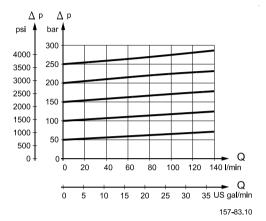
Symbol	Description		Code number	
₩ Ţ Ţ	PVPX,	12 V	157B4236	
157-150.10	Normally open: LS pressure relieved with no signal to PVPX	24 V	157B4238	
		12 V	157B4246	
157-151 10	Normally closed: LS pressure relieved with no signal to PVPX	24 V	157B4248	
	PVPX,	12 V	157B4256	
₩ <u></u>	Normally open with manual override: LS pressure relieved with no signal to PVPX	24 V	157B4258	
	Manual override DE-selects LS-pump	26 V	157B4260	
	Plug	Plug		

PVPC, Plug for External Pilot Oil Supply

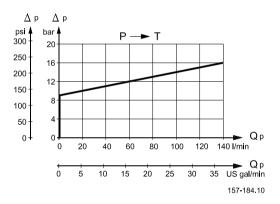
Symbol	Description		Code number
	PVP,	G 1/2, 12 mm deep	157B5400
	Plug without check valve for open or closed centre	1/2 in - 20; 0.47 in deep	-
	PVP, Plug with check valve for	G 1/2, 12 mm deep	157B5600
	open centre	1/2 in - 20; 0.47 in deep	157B5700

PVG 32 Proportional Valve Technical Information Technical Characteristics

General


The characteristics in this catalogue are typical measured results. During measuring a mineral based hydraulic oil with a viscosity of 21 mm²/s [102 SUS] at a temperature of 50°C [122°F] was used.

PVP, Pump Side Module


Pressure relief valve characteristic in PVP

The pressure relief valve is set at an oil flow of 15 l/min [4.0 US gal/min].

Setting range: 30 to 350 bar [435 to 5075 psi] (with PVSI end plate) and (300 bar [4351 psi] (with PVS end plate)

Neutral flow pressure in PVP, open centre

SAUER PVG 32 Proportional Technical Information PVG 32 Proportional Valve **Technical Characteristics**

PVB. **Basic Module**

Oil flow characteristics

The oil flow for the individual spool depends on

- type of basic module
- (with/without compensation)
- type of pump (fixed or variable displacement).

Please note:

The letters AA, A, B, etc. denote spool types, see pages 62 to 69. The characteristic below is shown for spool travel in both directions. All other characteristics are shown for spool travel in one direction only.

Pressure-compensated PVB, open or closed centre PVP

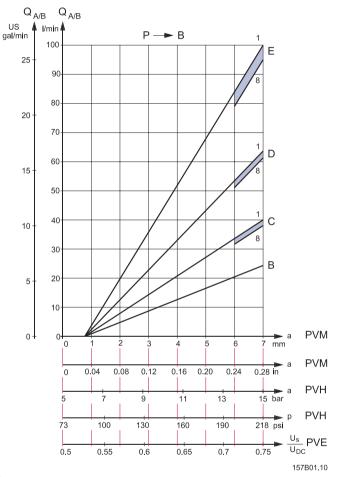
The oil flow is dependent on the supplied pump oil flow. The characteristics are plotted for a pump oil flow, Q_{P} corresponding to the rated max. spool oil flow, Q_{N} . Increasing the pump oil flow to $1.4 \times Q_N$ will give the same oil flow on the eighth as on the first basic module.

U_S = Signal voltage

U_{DC} = Supply voltage

- = First PVB after PVP 1
- = Eighth PVB after PVP 8

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information **Technical Characteristics**


PVB, **Basic Module**

Pressure compensated PVB, open or closed centre PVP

Linear characteristic

Please note:

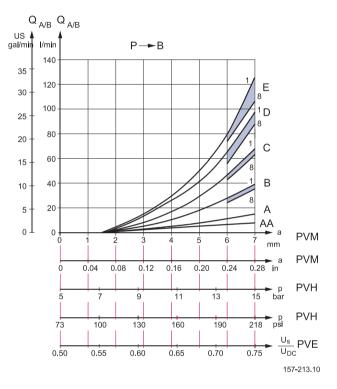
For PVB basic modules without pressure compensator the top ends of the characteristics (max. oil flow) are different so they correspond to those of the standard flow control spools, see characteristics for PVB without pressure compensator.

U_S = Signal voltage

 U_{DC} = Supply voltage

1 = First PVB after PVP

8 = Eighth PVB after PVP

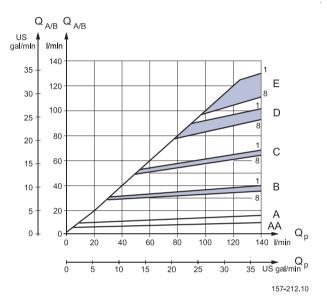


PVB, Basic Module

PVB without pressure compensation, open centre PVP

Oil flow as a function of spool travel

The spool flow is dependent on the supplied oil flow, Q_P. The characteristics apply to supply oil flow of 130 l/min [34.3 US gal/min] with the actuation of one basic module. If several basic modules are activated at the same time, the characteristic depends on the load pressure of the actuated basic modules.

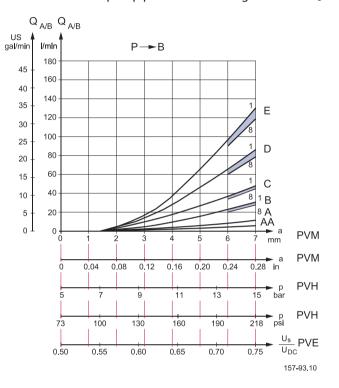


PVB, Basic Module

PVB without pressure compensation, open centre PVP

Oil flow $Q_{A/B}$ as a function of supplied pump oil flow (Q_P) – curves for fully displaced flow control spools.

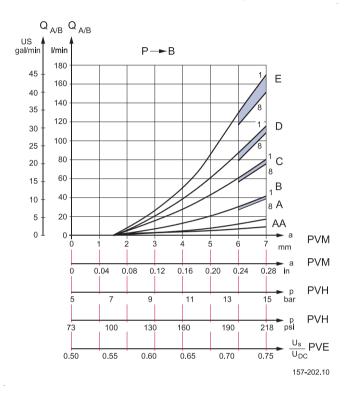
The pressure drop of any oil flowing back to tank ($Q_P - Q_{A/B}$) is read on the curve for neutral flow pressure in PVP, page 36.



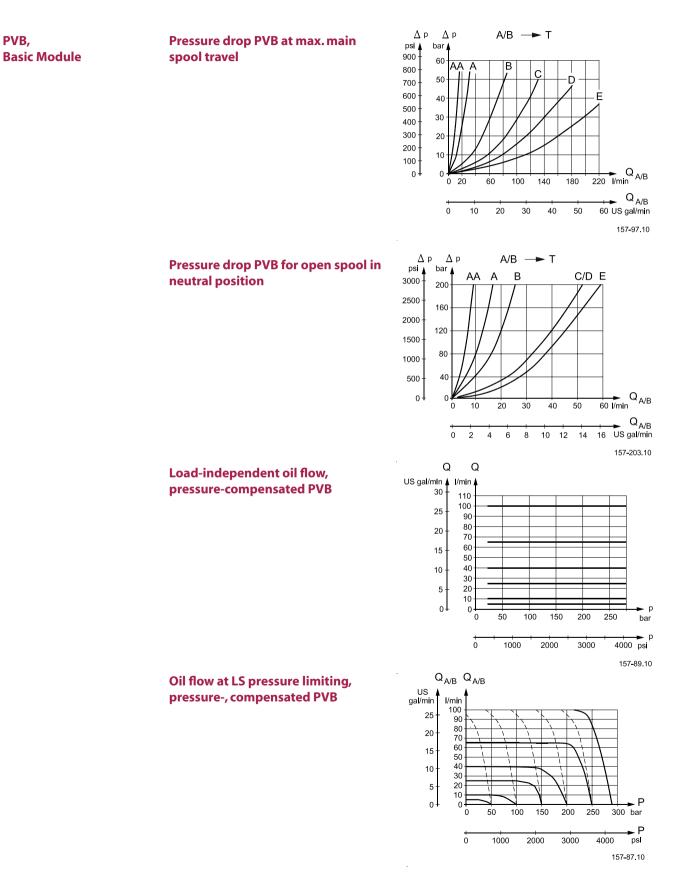
SAUER DANFOSS PVG 32 Proportional v Technical Information PVG 32 Proportional Valve **Technical Characteristics**

PVB without pressure compensation, closed centre PVP

Set pressure difference between pump pressure and LS signal = 10 bar [145 psi].

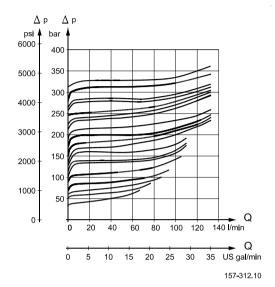

PVB, **Basic Module**

PVB, Basic Module


PVB without pressure compensation, closed centre PVP

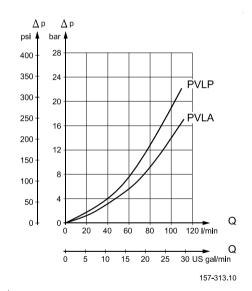
Set pressure difference between pump pressure and LS signal = 20 bar [290 psi].

The oil flow is dependent on the pressure difference between the pump pressure and the LS signal. Normally the pressure difference is set at the LS pump regulator.

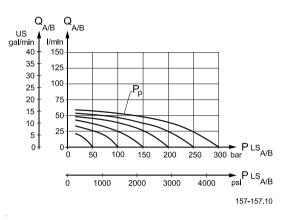

PVLP, Shock and Suction Valve

PVLP, shock valve

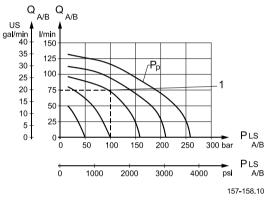
PVLP is set at an oil flow of 10 l/min [2.6 US gal/min].

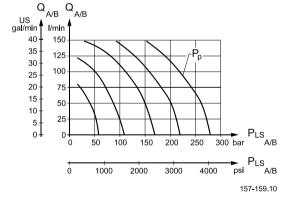

The shock valve PVLP is designed to absorb shock effects. Consequently, it should not be used as a pressure relief valve.

If the working function requires the use of a pressure relief valve, a PVB basic module with built-in $LS_{A/B}$ pressure limiting valve should be used.

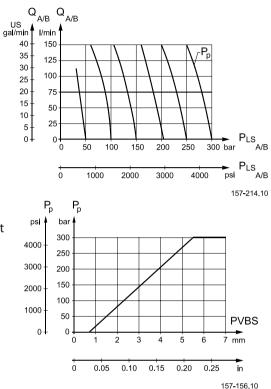

PVLA, Suction Valve

PVLP/PVLA, suction valve




Pressure Control Spools, Size A: Characteristics in Extreme Positions

Size C:



Q_{A/B} Q_{A/B} US gal/min l/min 40-150 35 125 30 100 25 -2 20 75 15· 50 10 25 5 0 P_{LS} _{A/B} 0 |0 300 bar 200 50 100 150 250 ► PLS + 0 1000 2000 3000 4000 157-160.10

Size D: 2: See example page 46

Pressure build-up

Max. oil flow can be reduced by about 50% without limitation of maximum pressure by limiting the main spool travel from 7 mm [0.28 in] to 5.5 mm [0.22 in]

Examples of How To Use the Characteristics for Pressure Control Spools

Example of determining the oil flow

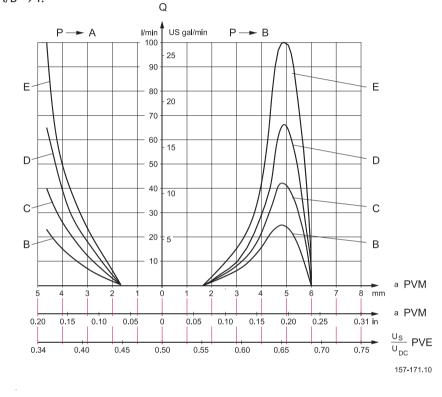
- Given:
 Spool type B
 - Spool type B
 - Pressure setting $P_{P\!:}$ 160 bar [2320 psi]
 - Load pressure, LS_{A/B:} 100 bar [1450 psi]
- Result:
 - Oil flow = 75 l/min [19.8 US gal/min] (see page 45, size B).

Example of determining spool size

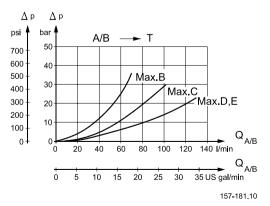
- Given:
 - Max. oil flow, Q_{A/B}: 90 l/min [23.8 US gal/min]
 - Pressure setting P_P: 150 bar [2175 psi]
 - Load pressure, PLSA: 125 bar [1810 psi]
- Result:
 - D spool (see page 45, size D)

Please note:

Normally a smaller spool can be chosen with pressure control. It is our experience that the spool can be one size smaller than with normal flow control.


PVG 32 Proportional Valve SAUER PVG 32 Proportional V DANFOSS Technical Information **Technical Characteristics**

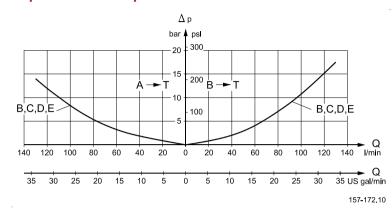
Characteristics for Float Position Main Spools


Characteristics; oil flow, spool travel and voltage

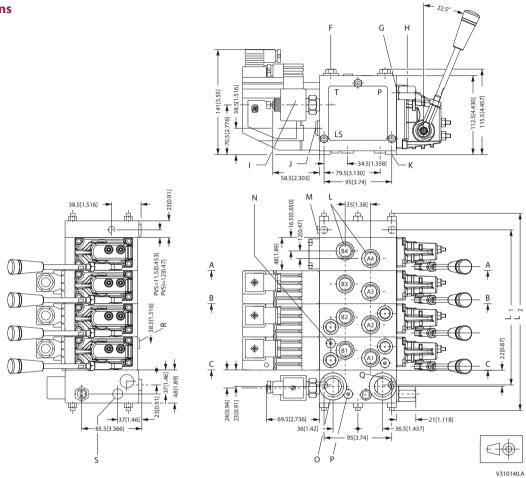
The spools have 4,8 mm spool travel in direction A and 8 mm travel in direction B:

- 4.8 mm [0.19 in] spool displacement in direction A gives max. oil flow to port A
- 4.8 mm [0.19 in] spool displacement in direction B gives max. oil flow to port B
- 8 mm [0.32 in] spool displacement in direction B gives completely open float position $A/B \rightarrow T$.

Pressure drop $A/B \rightarrow T$ at max. spool travel within the proportional range (4.8 mm) [0.19 in]



Spools D and E have the same opening area for forward flow and return flow. Spool E can give 100 l/min [26.4 US gal/min] pressure compensated oil flow due to a higher pressure drop across spool E. This occurs during spool actuation only.

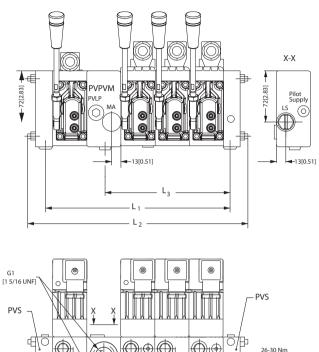

Pressure drop $A/B \rightarrow T$ in float position

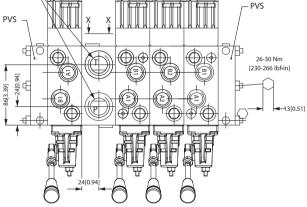
PVG 32 Proportional Valve Technical Information Dimensions

Dimensions

- F : Shock and suction valve, PVLP
- G : Pressure gauge connection; G $^{1}/_{4}$, 12 mm deep [$^{1}/_{2}$ in-20, 0.47 in deep]
- H : Plug for external pilot oil supply, PVPC; G 1 /₂, 12 mm deep [1 /₂ in-20, 0.47 in deep]
- I : Electrical LS unloading valve, PVPX
- J : LS connection; G $^{1}/_{4}$, 12 mm deep [$^{1}/_{2}$ in-20, 0.47 in deep]
- $K~:~Fixing ~holes; M8 \times min.~10 [^5/_{16} in 18,~0.47~in~deep]$
- L : Port A and B; G $^{1}/_{2}$, 14 mm deep [$^{7}/_{8}$ in-14, 0.65 in deep]
- M: LX connection: PVS; G¹/₈, 10 mm deep [³/₈in-24, 0.39 in deep]

PVSI; G¹/₄, 12 mm [0.47 in] deep – [¹/₂in-20, 0.47 in deep]


- N: LS pressure limiting valve
- O : Tank connection; G $^{3}/_{4}$, 16 mm deep [1 $^{1}/_{16}$ in-12, 0.75 in deep]
- P : Pressure relief valve
- Q : Pump connection; G $^{1}/_{2}$, 14 mm deep or G $^{3}/_{4}$, 16 mm deep [$^{7}/_{8}$ in-14, 0.65 in deep or 1 $^{1}/_{16}$ in-12, 0.75 in deep]
- R : LSA and LSB connections; G $^{1}\!/_{4}$, 12 mm [0.47 in] deep [$^{1}\!/_{2}$ in-20, 0.47 in deep]
- S: Pp, pilot pressure connection G ¹/₄

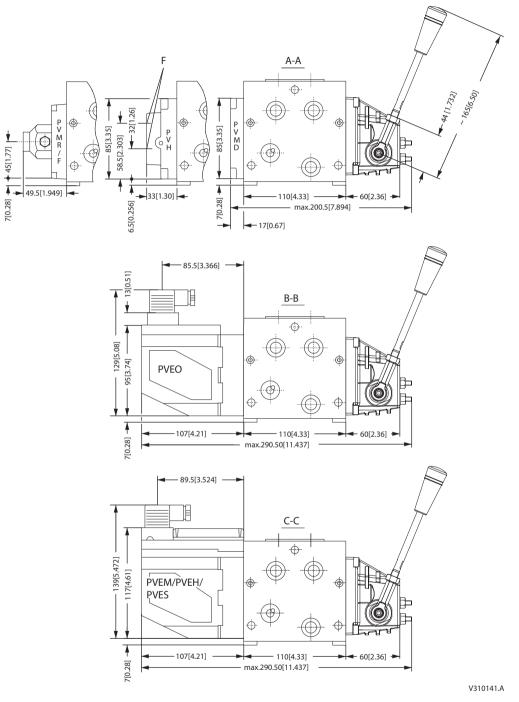

PVB		1	2	3	4	5	6	7	8	9	10	11	12
1.1	mm	82	130	178	226	274	322	370	418	466	514	562	610
	[in]	[3.23]	[5.12]	[7.01]	[8.90]	[10.79]	[12.68]	[14.57]	[16.46]	[18.35]	[20.24]	[562]	[610]
1.2	mm	140	189	238	287	336	385	434	483	527	576	622	670
L2	in]	[5.51]	[7.44]	[9.37]	[11.30]	[13.23]	[15.16]	[17.09]	[19.02]	[20.95]	[22.87]	[622]	[670]

PVG 32 Proportional Valve **Technical Information** Dimensions

Dimensions (Continued)

V310124.A

MA og LS: G 1/4 Work port dimesions, see page 49.


Stay Bo PVPVM	lt Set, PVAS	for		32 valve 61 - 806		fitted w	ith PVPV	use star	ndard PV	AS, 157E	38001 - 8	8010	
Qty.,bas	sic Module	1	2	3	4	5	6	7	8	9	10	11	12
L ₁	mm [in]	116 [4.57]	166 [6.54]	214 [8.42]	262 [10.31]	310 [12.20]	358 [14.09]	406 [16.0]	454 [17.87]	502 19.76]	550 [21.65]	598 [23.54]	646 [25.43]
[เก]	mm	165 [6.5]	213 [8.39[262 [10.31]	311 [12.24]	360 [14.17]	409 [16.10]	458 [18.03]	507 [19.96]	551 [21.69]	600 {23.62]	646 [25.43]	694 [27.32]
[เก]	mm	83 [3.27]	131 [5.16]	179 [7.05]	227 [8.94]	275 [10.83]	323 [12.72]	371 [14.61]	419 [16.50]	467 [18.38]	515 [20.28]	563 [22.17]	611 [24.06]

In PVG 32 valve groups fitted with PVPV use standard PVAS, 157B8001 - 8010 and 8061 - 8062

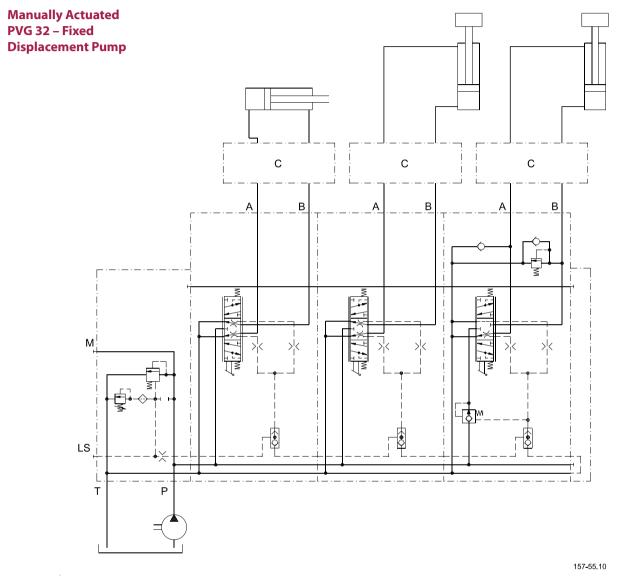
PVG 32 Proportional Valve Technical Information Dimensions

Dimensions (Continued)

F : G¹/₄, 12 mm deep [¹/₂ in - 20, 0.47 in deep]

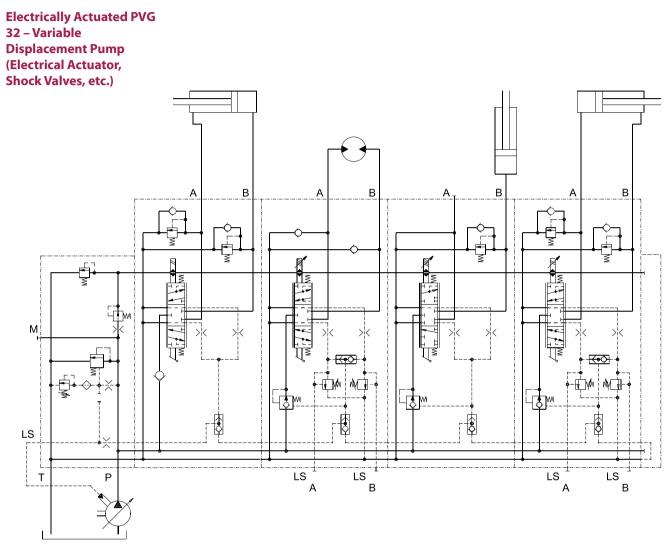
SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information Notes

Notes


SAUER DANFOSS PVG 32 Proportional va Technical Information PVG 32 Proportional Valve Lever Positions

Control Lever Positions Base with an angle of 22.5° Base with an angle of 37.5° 19 172. V310014.A 2

V310018.A


PVG 32 Proportional Valve Technical Information Hydraulic Systems

C: Over-centre valve

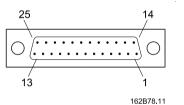
SAUER DANFOSS PVG 32 Proportional vo Technical Information PVG 32 Proportional Valve Hydraulic Systems

157-56.10

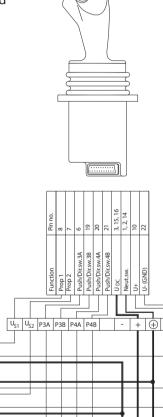
PVG 32 Proportional Valve Technical Information Electrical Systems

Electrical Connections, General The electrical connections to remote control levers, PVE actuators and voltage supply are made using an ordinary terminal strip.

The wiring diagrams below and on page 56 to 59 show only the basic outlines for the electrical connection.


Voltage supply For a main transformer with stabilised output voltage, the ripple must not exceed 5% of rated voltage.

Electrical Connection Example


n Signal leads must not act as supply leads at the same time unless the distance between the actuator module PVE and terminal board is less than 3 m [3.3 yards] and the lead cross-section is min. 0.75 mm² [AWG 18].

25 Pin SUB-D connector

with M3 screws (MIL-DTL-24308)

PVEH/A/S

- E: Emergency stop
- F: Signal output, fault monitoring
- NC: Not connected

V310116.A

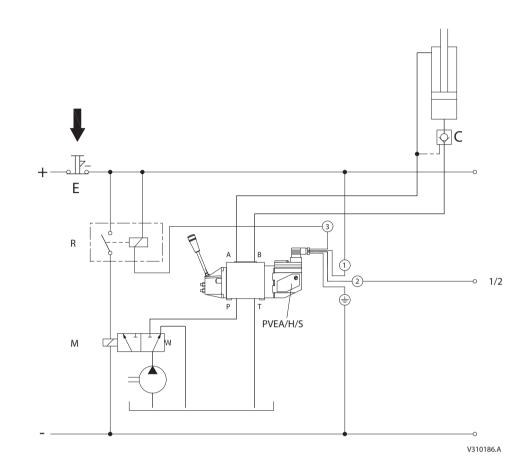
U _D

U

PVG 32 Proportional Valve **SAUER PVG 32 Proportional V Technical Information** System Safety

Building in Safety	All makes and all types of directional control valves (incl. proportional valves) can fail. Thus the necessary protection against the serious consequences of function failure should always be built in.
	For each application an assessment should be made of the consequences of pressure failure and uncontrolled or blocked movements. To determine the degree of protection that ought to be built into the system, Sauer-Danfoss makes the following distinctions.
	 Maximum safety demands High safety demands Average safety demands Limited safety demands.

A Warning


All makes and all types of directional control valves – inclusive proportional valves – can fail and cause serious damage. It is therefore important to analyse all aspects of the application.

Because the proportional valves are used in many different operation conditions and applications, the manufacturer of the application is responsible for making the final selection of the products- and assuring that all performance, safety and warning requirements of the application are met.

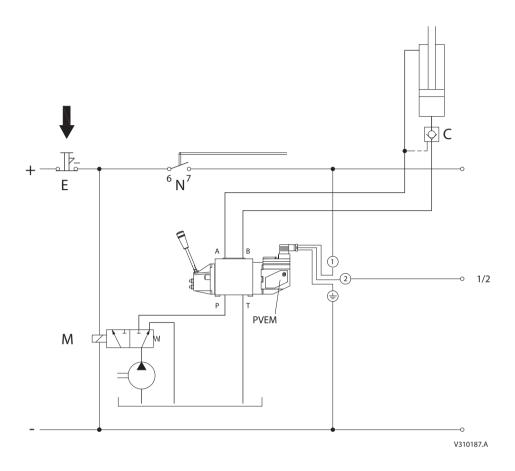
The process of choosing the control system – and safety level – could e.g. be governed by ISO 13849 (Safety related parts of control system).

When the fault monitoring system in PVEH is connected, the reaction to electrical and mechanical faults (e.g. a spool seizure) is fast and operator-independent. See page 23 "fault monitoring".

A system can be protected against many electrical, hydraulic and mechanical faults by building in components as shown in the diagram:

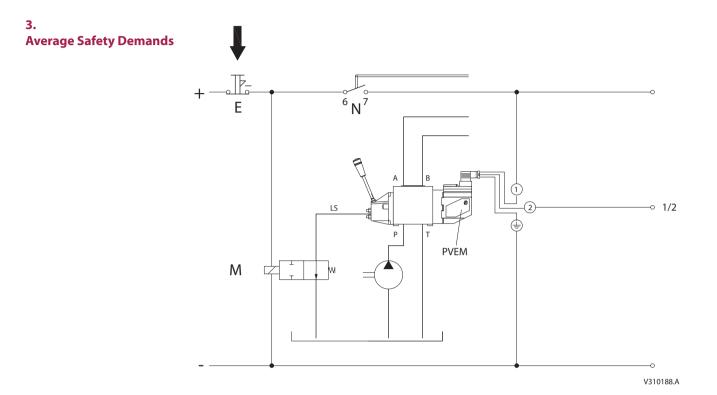
- R: Alarm logic EHA (or relay) connected to the fault monitoring system in PVEH
- E: Electrical emergency stop
- M: Solenoid valve
- C: Pilot-operated check valve

The alarm logic EHA cuts off current to the solenoid valve (M) when PVEH monitoring registers a fault. The solenoid valve then leads the oil flow direct from pump to tank. Thus all functions are without operating pressure, i.e. locked in position, because there is no pilot pressure on the pilot operated check valve (C).


Actuation of the emergency switch (E) cuts off current to the proportional valve and the solenoid valve (M). Actuation in this case is manual, but the result is the same as above. Stopping or disconnecting the pump drive motor is another safety measure, if the system reaction time can be accepted.

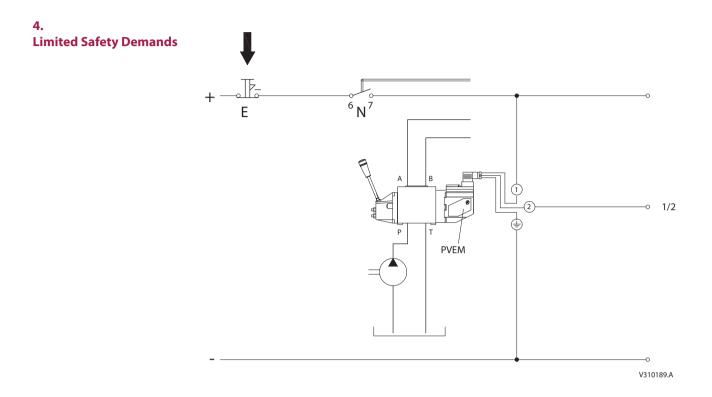
Note:

The neutral position switch in the remote control units should not be used. PVEH with fault monitoring must have a constant voltage supply.


2. High Safety Demands

The difference between this safety method and the one previously described (1) is that here there is no built-in automatic fault monitoring and a neutral position switch (N) is connected.

The method still gives a high degree of protection, but requires operator intervention. It is recommended that the neutral position switch be always connected to the electrical system. This then automatically cuts off current to the proportional valve when the remote control unit is in neutral position.


The difference from the previous method is that the LS- signal from the proportional valve is led direct to tank when the emergency switch (E) is actuated. This can be achieved by using the Sauer-Danfoss LS unloading valve PVPX, integrated in the pump side module.

In a system with open centre PVP and a fixed displacement pump, the effect of the PVPX is an almost pressureless system, 8-14 bar [120-200 psi] i.e. all functions requiring a higher operating pressure will not operate, see page 13.

The method can also be used in LS systems with a variable displacement pump and closed centre version proportional valve.

The pressure after LS relief then depends on the pump stand-by pressure.

The safety system can consist of an emergency switch (E) and a neutral position switch (N) if protection against electrical failure is the only requirement. Here, there is no protection against hydraulic and mechanical faults (spool seizured in an extreme position).

PVG 32 Proportional Valve AUER Technical Information **Other Operating Conditions**

Oil

The main duty of the oil in a hydraulic system is to transfer energy; but it must also lubricate the moving parts in hydraulic components, protect them against corrosion, and transport dirt particles and heat out of the system. It is therefore important to choose the correct oil with the correct additives. This gives normal operation and long working life.

Mineral oil

For systems with PVG 32 valves Sauer-Danfoss recommends the use of mineral-based hydraulic oil containing additives: Type HLP (DIN 51524) or HM (ISO 6743/4).

Non-flammable fluids

Phosphate-esters (HFDR fluids) can be used without special precautions. However, dynamic seals must be replaced with FPM (Viton) seals.

So please contact the Sauer-Danfoss Sales Organization if the PVG 32 valve is to be used with phosphate-esters.

The following fluids should only be used according to agreement with the Sales Organization for Sauer-Danfoss:

- Water-glycol mixtures (HFC fluids)
- Water-oil emulsions (HFB fluids)
- Oil-water emulsions (HFAE fluids)

Biodegradable oils

PVG 32 valves can be used in systems with rapeseed oil. The use of rapeseed oil is conditioned by

- complying with the demands on viscosity, water content, temperature and filtering etc. (see chapters below and technical data page 14).
- adapting the operating conditions to the directions of the oil supplier.

Before using other biodegradable fluids, please consult the Sauer-Danfoss Organization.

Particle Content, Degree of Contamination

Oil filtration must prevent particle content from exceeding an acceptable level, i.e. an acceptable degree of contamination.

Maximum contamination for PVG 32 is 23/19/16 (see ISO 4406. Calibration in accordance with the ACFTD method).

In our experience a degree of contamination of 23/19/16 can be maintained by using a filter fineness as described in the next section.

PVG 32 Proportional Valve SAUER DANFOSS Technical Information **Other Operating Conditions**

Filtration

Effective filtration is the most important precondition in ensuring that a hydraulic system performs reliably and has a long working life. Filter manufacturers issue instructions and recommendations. It is advisable to follow them.

System filters

Where demands on safety and reliability are very high a pressure filter with bypass and indicator is recommended. Experience shows that a 10 µm nominal filter (or finer) or a 20 µm absolute filter (or finer) is suitable.

It is our experience that a return filter is adequate in a purely mechanically operated valve system.

The fineness of a pressure filter must be selected as described by the filter manufacturer so that a particle level of 23/19/16 is not exceeded.

The filter must be fitted with pressure gauge or dirt indicator to make it possible to check the condition of the filter.

In systems with differential cylinders or accumulators the return filter must be sized to suit the max. return oil flow. Pressure filters must be fitted to suit max. pump oil flow.

Internal filters

The filters built into PVG 32 are not intended to filter the system but to protect important components against large particles. Such particles can appear in the system as a result of pump damage, hose fracture, use of quick-couplings, filter damage, starting up, contamination, etc.

The filter in the electrical actuator PVE protecting the solenoid valves has a mesh of 150 μm.

Bursting pressure drop for internal filters is 25 bar [360 psi].

Standard PC Spools

		e used n LS _{A/B} Si				Code n 157		i		out LS _A	when _{/B} shutt ze		e
		. compo nin [US	ensate							. comp	ensate gal/mi		
E	D	C 40	B 25	Α	AA	ISO symbol	Symbol	AA	Α	В	С	D	E
100 [26.4]	65 [17.2]	-	25 [6.6]	10 [2.6]	5 [1.3]			5 [1.3]	10 [2.6]	25 [6.6]	40 [10.6]	65 [17.2]	100 [26.4]
-	7033	7032	7031	7030	7035	$ \begin{array}{c c} B & A \\ \hline $	$\begin{array}{c} B A \\ \hline H & T P T \\ 157-121.10 \end{array}$	7015	7010	7011	7012	7013	-
7134	7133	7132	7131	7130	7135	B A ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	BA TPT 157-128.10	7115	7110	7111	7112	7113	-
7064	7063	7062	7061	-	-	B A P T 157-144.10 4-way, 3-position Closed neutral position, I	BA $\frac{1}{1+1}$ TPT $157-123.10$	-	7040	7041	7042	7043	7044
7074	7073	7072	7071	_	-	B A P T 157-145.10 4-way, 3-position Closed neutral position, I	BA TPT 157-122.10	-	7050	7051	7052	7053	7054
7164	7163	7162	7161	-	-	BA PT 157-147.10 4-way, 3-position Throttled, open neutral p	BA <u> <u> </u> </u>	-	7150	7151	7152	7153	7154
7174	7173	7172	7171	-	-	BA PT 157-148.10 4-way, 3-position Throttled, open neutral p	BA FPT $157-132.10$ $FC \rightarrow B$	-	7150	7151	7152	7153	7154

Standard PC Spools

		oe used h LS _{A/B} Si					umber 'B	i		out LS _A	l when _{/B} shutt ze		e
		. compo nin [US									ensateo gal/mi		
E	D	С	В	Α	AA	ISO symbol	Symbol	AA	Α	В	С	D	E
100	65	40	25	10	5			5	10	25	40	65	100
[26.4]	[17.2]	[10.6]	[6.6]	[2.6]	[1.3]			[1.3]	[2.6]	[6.6]	[10.6]	[17.2]	[26.4]
-	7473	7472	7471	7470	-	$ \begin{array}{c} B A \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline $	BA TPT 157-142.10	-	-	-	7452	7453	-
						Throttled, $A \rightarrow T$ neutral	position, PC \rightarrow B						
-	7563	7562	_	-	-	B A P T 157-167.10 4-way, 3-position Throttled, $B \rightarrow T$ neutral p	BA TPT 157-188.10	-	-	7541	7542	7543	-

Standard PC Spools, Hydraulic Actuation

		e used n LS _{A/B} : Si:	shuttle			Code n 157		i		out LS _A	when _{/B} shutt ze		e
		. compe nin [US									ensate gal/mi		
E 100 [26.4]	D 65 [17.2]	C 40 [10.6]	B 25 [6.6]	A 10 [2.6]	AA 5 [1.3]	ISO symbol	Symbol	AA 5 [1.3]	A 10 [2.6]	B 25 [6.6]	C 40 [10.6]	D 65 [17.2]	E 100 [26.4]
-	_	_	-	_	-	BA PT 157-143.10 4-way, 3-position Closed neutral position, F	$\begin{array}{c} B \\ \hline \\$	9015	9010	9011	9012	-	-
-	-	-	-	-	-	B A P T 157-144.10 4-way, 3-position Closed neutral position, F	BA $f(x) = f(x) = f(x)$ TPT $f(x) = f(x)$ $F(x) = f(x)$ $F(x) = f(x)$	-	-	_	9042	9043	9044
-	-	-	-	-	-	$\begin{array}{c c} B & A \\ \hline & \downarrow \\ \hline \\ \hline & \downarrow \\ \hline & \downarrow \\ \hline \\ \hline & \downarrow \\ \hline \\ \hline & \downarrow \\ \hline \\ \hline \\ \hline & \downarrow \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline$	BA FPT $157-122.10$	-	-	-	9052	9053	9054

Standard FC Spools

		o be u vith LS					Code n 157					sed wh LS _{A/B} sh Size			
	Pre	ess. coi l/min	mpens [US ga		ow					Pre	ess. co l/min	mpens [US ga	ated fl l/min]	ow	
F 130 [34.3]	E 100 [26.4]	D 65 [17.2]	C 40 [10.6]	B 25 [6.6]	A 10 [2.6]	AA 5 [1.3]	ISO symbol	Symbol	AA 5 [1.3]	A 10 [2.6]	B 25 [6.6]	C 40 [10.6]	D 65 [17.2]	E 100 [26.4]	F 130 [34.3]
7026	7024	7023	7022	7021	7020	7025	BA PT 157-02.10 4-way, 3-position Closed neutral positi	$ \begin{array}{c} BA \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline $	7005	7000	7001	7002	7003	7004	7006
7126	7124	7123	7122	7121	7120	7125	BA PT 157-03.10 4-way, 3-position Throttled, open neu	BA $ $	7105	7100	7101	7102	7103	7104	7106
-	-	-	-	-	-	-	A P T 157-04.10 3-way, 3-position Closed neutral positi	A $\frac{11 + 11 + 11 + 11}{T + 11 + 11 + 11}$ $T P T$ $157-28.10$ tion, P \rightarrow A	-	7200	7201	7202	7203	7204	-
-	-	-	-	-	-	-	B P T 157-05.10 3-way, 3-position Closed neutral positi	$ \frac{B}{1} \xrightarrow{H} 1 \xrightarrow{H} 1 \xrightarrow{H} 1}{T P T} $ $ \frac{1}{T} \xrightarrow{T} 1 \xrightarrow{T} 1 \xrightarrow{T} 1}{T P T} $ $ 157-29.10 $ tion, P \rightarrow B	-	-	7301	7302	7303	7304	-

Standard FC Spools

		o be u vith LS					Code n 157	umber B				sed wh LS _{A/B} sh Size			
	Pre	ess. coi l/min	npens [US ga							Pre		mpens [US ga		ow	
F 130 [34.3]	E 100 [26.4]	D 65 [17.2]	C 40 [10.6]	B 25 [6.6]	A 10 [2.6]	AA 5 [1.3]	ISO symbol	Symbol	AA 5 [1.3]	A 10 [2.6]	B 25 [6.6]	C 40 [10.6]	D 65 [17.2]	E 100 [26.4]	F 130 [34.3]
-	7424	7423	7422	7421	-	-	B A P T 4-way, 3-position Throttled, $A \rightarrow T$ in P	$ \frac{BA}{\frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}}{TPT}} $ TPT 157-30.10 neutral position	-	-	7401	7402	7403	7404	7406
-	7524	7523	7522	7521	-	-	B A P T 157-07.10 4-way, 3-position Throttled, $B \rightarrow T$ in I	$\frac{BA}{\begin{bmatrix} 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline TPT \\ 157-31.10 \\ \hline Teutral position \\ \hline 157-31.10 \\ \hline Teutral position \\ \hline 157-31.10 \\ $	-	_	7501	7502	7503	7504	-
-	7624	7623	7622	7621	7620	-	B A P T 157-13 4-way, 4-position Closed neutral posit Float $P \rightarrow B \rightarrow F$	БА <u> </u>	-	-	-	-	-	-	-

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information **Module Selection Chart**

Standard FC Spools, Hydraulic Actuation

		e used n LS _{A/B} Si				Code n 157		i		out LS _A	l when _{/B} shutt ze		e
		. compo nin [US									ensateo gal/mi		
Е	D	С	В	Α	AA	ISO symbol	Symbol	AA	Α	В	С	D	E
100 [26.4]	65 [17.2]	40 [10.6]	25 [6.6]	10 [2.6]	5 [1.3]			5 [1.3]	10 [2.6]	25 [6.6]	40 [10.6]	65 [17.2]	100 [26.4]
9024	9023	9022	9021	9020	9025	BA PT 157-02.10 4-way, 3-position closed neutral position	BA T T T T T T T T T T T T T T T T T T T	9005	9000	9001	9002	9003	9004
9124	9123	9122	9121	9120	9125	$ \begin{array}{c c} B A \\ \hline $	BA <u> <u> </u> </u>	9105	9100	9101	9102	9103	9104
						Throttled open neutral po	osition						

PVMR, FC Spools for Friction Detent

		e used n LS _{A/B} : Si	shuttle			Code n 157		i		out LS _A	l when _{/B} shutt ze		e
		. compo nin [US									ensateo gal/mi		
E	D	С	В	Α	AA	ISO symbol	Symbol	AA	Α	В	C	D	E
100 [26.4]	65 [17.2]	40 [10.6]	25 [6.6]	10 [2.6]	5 [1.3]			5 [1.3]	10 [2.6]	25 [6.6]	40 [10.6]	65 [17.2]	100 [26.4]
9724	9723	9722	9721	9720	-	$ \begin{array}{c c} B & A \\ \hline $	BA <u> 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	-	9700	9701	9702	9703	9704
9734	9733	9732	9731	9730	-	B A P T 157-03.10 4-way, 3-position Throttled open neutral p	BA <u>TPT</u> 157-118.10	-	9710	9711	9712	9713	9714

FC Spools for Mechanical Float Position PVMF

		o be u vith LS	_{A/B} shu				Code n 157	umber B				sed wh LS _{A/B} sh			
			Size									Size			
	Pre	ess. coi l/min	mpens [US ga		ow					Pre		mpens [US ga		ow	
F	E	D	С	В	Α	AA	ISO symbol	Symbol	AA	Α	В	С	D	E	F
130	100	65	40	25	10	5			5	10	25	40	65	100	130
[34.3]	[26.4]	[17.2]	[10.6]	[6.6]	[2.6]	[1.3]			[1.3]	[2.6]	[6.6]	[10.6]	[17.2]	[26.4]	[34.3]
-	9824	9823	9822	9821	9820	9825	$\begin{array}{c c} B & A \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ P & T \\ \hline & & \\ P & T \\ \hline & & \\ 157-05 \\ \hline & & \\ \hline & & \\ 4-way, 4 \text{ position} \\ \hline \\ Closed neutral posit \\ P \rightarrow A \rightarrow F \end{array}$	-	-	-	-	-	-	-	
-	9624	623	9622	9621	-	-	B A P T 157-138 4-way, 4-position Closed neutral posit Float P \rightarrow B \rightarrow F		-	-	-	-	-	-	-

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information **Module Selection Chart**

FC Spools with Linear Flow Characteristic

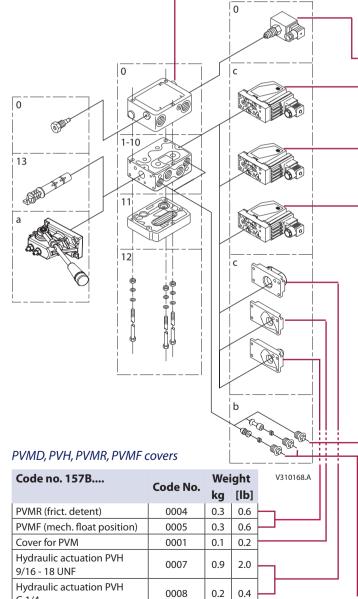
	Т	o be u	sed wh	ittle va	В		Code n 157					sed wh LS _{A/B} sl Size			
	Pre		mpens [US ga	ated fl l/min]	ow					Pro		mpens [US ga		ow	
F 130	E 100	D 65	C 40	B 25	A 10	AA 5	ISO symbol	Symbol	AA 5	A 10	B 25	C 40	D 65	E 100	F 130
[34.3]	[26.4]	[17.2]	[10.6]	[6.6]	[2.6]	[1.3]			[1.3]	[2.6]	[6.6]	[10.6]	[17.2]	[26.4]	[34.3]
-	9774	9773	9772	9771	-	-	B A P T 157-02.10	BA <u> <u> </u> </u>	-	9750	9751	9752	9753	9754	-
							4-way, 3-position Closed neutral posit	ion							
-	9784	9783	9782	9781	-	-	B A P T 157-03.10 4-way, 3-position Throttled, open neu	ВА <u>L</u> <u>М</u> <u>М</u> <u>Г</u> <u>T</u> РТ 157-27.10	-	9760	9761	9762	9763	9764	-
-	-	-	-	-	-	-	$\begin{array}{c c} B & A \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ P & T \\ 157-06.10 \\ \hline \\ 4-way, 3-position \\ \hline \\ Throttled, A \rightarrow T in 1 \\ \hline \end{array}$	$ \frac{BA}{\boxed{1+1}, \boxed{1+1}, 1+1$	-	-	_	_	-	9794	-
-	-	-	-	-	-	-	$\begin{array}{c c} B & A \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ P & T \\ & & \\ \hline & & \\ P^{-1} & \\ 157-07.10 \\ \hline \\ 4 - & \\ Way, 3 - position \\ B \rightarrow T in neutral poset$	BA <u>TPT</u> 157-31.10	-	-	-	-	-	9804	-

PVG 32 Proportional Valve Technical Information Module Selection Chart

PVB, basic valves

Without comper With check valve With check valve valve With compensat With damped co With compensat LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co	e e and LS tor valve		G ¹ /2	1ves A a				ves A a	nd B	no.		and with		and	with
With check valve With check valve valve With compensat With damped co With compensat LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co	e e and LS tor valve			G ¹ /2 ⁷ /8 - 14 UNF G ¹ /2 ⁷ /8 - 14 UNF 157E		2		without		and with PVLP 63					
With check valve With check valve valve With compensat With damped co With compensat LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co	e e and LS tor valve		/e 6000					1		1371		PVLP 63			
With check valve valve With compensat With damped co With compensat LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co	e and LS tor valve		6100		6400		6030	1	5430		G1				16 - 12UNI
valve With compensat With damped co With compensat LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co	tor valve		6100	-	6500		6130	6	530	PVPV	593			5941	5913
With compensat With damped co With compensat LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co		A/B SNUTT	e		-		6136	6	536	PVPV				940	5914
With damped co With compensat LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co		2	6200	-	6600		6230	F	630	Weigl	nt		kg [lb] 3	.0 [6.6]	
With compensat LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co					-		6236		-						
LS _{A/B} relief valve LS _{A/B} shuttle valv With damped co	<u> </u>		0200				0250								
LS _{A/B} shuttle valv With damped co		-7	6203		5603		6233	6	633						
	ompens	ator valve	·,											0	
LS _{A/B} relief valve			6208		-		6238		-				i	۱ ۱	i
LS _{A/B} shuttle valv														, M	QBD
Weight	kg [lb]		3.1 [6.	8]			3.0 [6.6	5]						
											0	·			
VPC, plugs															
Code no. 157B	•••		- 11			Weig	ht		<u> </u>						
			G ¹ /2	¹ /2 in - 2	20		[lb]		0		6				
External pilot su	vlaa		5400	-		0.05	0.1			The I				V.	·
External pilot su		l. check									1-10				
valve			5600	5700	0	0.05	0.1		13		1	SZ	1		
			I									8 . 20 D	>		
VM, mechani	ical act	tuation							1 M	The second				\checkmark	
Standard		157B.	317	** 3	191*	22	.5°							\sim	», İ
Standard		1570.	317	2 3	192*	37	.5°		a 🧉		┌┼─৻《	\$ <i>\\\</i>			
Standard, with b		157B.	317		194*		.5°					W/			20 19
without arm and		1	317	/5 3	195*	22	.5°		- aa		12	· -	-i		
Standard, withou		157B.	317	3 3	193*		-							C Sta	»
arm and button		Les 1	L1		4 [0 0]					NO I		¢\$		se s	(36°
Weight			b]	0.4	4 [0.9]				<u> </u>			¢۳ ۳			1
Without stop screws.	**Anodize	ed 157B3184													ian i
											l 1	5 A			A I
nd plate, PVS,	, PVSI											μe			2
Code no. 157B	•••					_		We	ight			1.	- i i	X	
					BSI	PS	AE	kg	[lb]						Ĭ
PVS, without cor	nnectio	ns			200	0 2	020	0.5	1.1						
PVS, with LX con			3 [3/8 -24	JNF]	201		021	0.5	1.1					b	
PVSI, without co					201	_	004	1.7	3.6				1		
PVSI, with LX cor			1 [1/2 -20	JNF]	201	_	005	1.7	3.6						
				-			1								
VAS, assembly	ly kit														V310168.A
Code no,	0	1	2	3		4		5	6	7	8	9	10	11	12
157B PVB's	8000	8001	8002	800	3	8004	6	3005	8006	8007	8008	8009	8010	8061	8062
PVB + PVPVM	_	8021	8002	800		8024	_	3005 3025	8006	8007	8008	8029	8030	8081	8082
	- 0.1[0.2]	0.15 [0.3]	0.25 [0.6	-		0.40 [0.		5 [1.0]	0.50 [1.1]	0.60 [1.3]	0.65 [1.4		0.80 [1.7		

PVPV/M, pump side module closed center


Code no. 15	57B	2032	2050	2063	2080	2100	2125	2140	2150	2160	2175	2190	2210	2230	2240	2250	2265	2280	2300	2320	2350
Catting	bar	32	50	63	80	100	125	140	150	160	175	190	210	230	240	250	265	280	300	320	350
Settings	[psi]	460	725	914	1160	1450	1813	2031	2175	2320	2538	2755	3045	3335	3480	3625	3845	4061	4351	4641	5075
Weight			0.05 kg [0.17 lb]																		

PVG 32 Proportional Valve Technical Information Module Selection Chart

PVP, pump side module

Code no. 15	7B	Without p	oilot supply		With pile	ot supply	
		for PVE	for PVE with facilit. for PVPX	for PVE	for PVE and facilit. for PVPX	for PVE and pilot oil pressure take-off	for PVH and pilot oil pressure take-off
	$P = G^{1/2}, T = G^{3/4}$	5000	-	5010	5012	-	-
	$P = \frac{7}{8}$ in - 14, $T = 1^{1}/_{16}$ in - 12	5200	-	5210	5212	-	-
Open centre	$P = G^{3}/_{4}, T = G^{3}/_{4}$	5100	5102	5110	5112	5180	5190
	$P = 1^{1/16}$ in - 12, $T = 1^{1/16}$ in - 12	5300	-	5310	5312	5380	5390
	$P = G^{1/2}$, $T = G^{3/4}$,	5001	-	5011	5013	-	-
Closed centre	$P = \frac{7}{8}$ in - 14, $T = 1^{1}/_{16}$ in - 12	5201	-	5211	5213	-	-
Closed centre	$P = G^{3}/_{4}, T = G^{3}/_{4},$	5101	5103	5111	5113	5181	5191
	$P = 1^{-1}/_{16}$ in - 12, $T = 1^{-1}/_{16}$ in - 12		-	5311	5313	5381	5391
Weight	kg [lb]	3.0 [6.6]	3.0 [6.6]	3.0 [6.6]	3.0 [6.6]	3.0 [6.6]	3.0 [6.6]

G 1/4

PVPX, electrical LS pressure relief valves

Code no. 157B		Code	Wei	ght
		No.	kg	[lb]
Normally open	12 V	4236	0.3	0.7
Normally open	24 V	4238	0.3	0.7
Normally closed	12 V	4246	0.3	0.7
Normally closed	24 V	4248	0.3	0.7
Name allo an an aith	12 V	4256	0.3	0.7
Normally open with manual override	24 V	4258	0.3	0.7
manual overnue	26 V	4260	0.3	0.7
Plug		5601	0.06	0.13

PVE, electrical actuation

Code no. 157B		(Code N	о.	Weight
		Hir.	AMP	Deut.	kg [lb]
– PVEO, on-off	12 V	4216	4901	4291	0.6 [1.3]
- PVEO, 011-011	24 V	4228	4902	4292	0.6 [1.3]
DVEO B on/off	12 V	4217	4903	-	0.6 [1.3]
PVEO-R, on/off	24 V	4229	4904	-	0.6 [1.3]
PVEM, prop. medium	12 V	4116	-	-	0.9 [2.0]
– Standard	24 V	4128	-	-	0.9 [2.0]
PVEM, prop. medium	12 V	4416	-	-	1.0 [2.2]
– Float -> B	24 V	4428	-	-	1.0 [2.2]
PVEA, active fault mon	ı.	-	4734	4792	0.9 [2.0]
PVEA, passive fault mo	on.	-	4735	-	0.9 [2.0]
PVEA-DI, active fault m	non.	-	4736	4796	0.9 [2.0]
PVEA-DI, passive fault	mon.	-	4737	-	0.9 [2.0]
PVEH active fault mon		4032	4034	4092	1.0 [2.2]
PVEH passive fault mo	n.	4033	4035	4093	1.0 [2.2]
PVEH float -> B, act. fa	ult	4332	-	4392	1.0 [2.2]
PVEH float -> A, act. fa	ult	-	4338	-	1.0 [2.2]
PVEH- DI active fault m	non.	-	4036	4096	1.0 [2.2]
PVEH - DI passive fault	mon.	-	4037	-	1.0 [2.2]
PVES, active fault mon		4832	4834	4892	1.0 [2.2]
PVES, passive fault mo	n.	4833	4835	-	1.0 [2.2]

PVLA, anti-cavitation valve

Code no. 157B	Code No.	Wei	ight	
		kg	[lb]	
Plug A or B	2002	0.04	0.09	
Valve A or B	2001	0.05	0.1	

PVG 32 Proportional Valve **SAUER** PVG 32 Proportional v **DANFOSS** Technical Information **Order Specification**

Order Specification

An order form for Sauer-Danfoss PVG 32 hydraulic valve is shown on the next page. The form can be obtained from the Sauer-Danfoss Sales Organization.

Both the module selection chart on the previous pages and the order form are divided into fields 0, 1-10, 11, 12, 13, a, b, and c.

Each module has its own field:

- Ô٠ - Pump side module PVP
 - Plug for external pilot oil supply PVPC
 - Electrical LS unloading valve PVPX
- 1-10: Basic valves PVB
- 13: Main spool PVBS
- Mechanical actuator PVM (or PVE when option mounted) a:
- C: - Cover for mechanical actuation PVMD
 - Cover for hydraulic actuation PVH
 - Electrical actuators PVE (or PVM when option mounted)
- Shock and suction valve PVLP b:
 - Suction valve PVLA
- 11: End plate PVS
- 12: Assembly kit PVAS

Please state

- Code numbers of all modules required
- Required setting (P) for pump side module
- Required setting of LS_{A/B} pressure limiting valves, see pressure setting guidance below.

Standard and option assembly

The PVG 32 valve group is assembled the way the module selection chart shows if the code number for PVM is written in field a, and the code number for PVMD, PVE or PVH in field c.

The valve group is assembled so that the mechanical actuator is mounted on the opposite end of the basic module, if the code number for PVM is written in field c of the order form and the code numbers for PVMD, PVE or PVH in field a.

Reordering

The space at the top right-hand corner of the form is for Sauer-Danfoss to fill in. The code number for the whole of the specified valve group (PVG No.) is entered here. In the event of a repeat order all you have to do is enter the number Sauer-Danfoss has given on the initial confirmation of order.

SAUER DANFOSS PVG 32 Proportional v Technical Information PVG 32 Proportional Valve **Order Specification**

Order Specification

Pressure setting limits

The maximum setting pressure for the pressure limiting valves LS_A or LS_B depends on the chosen pressure setting for shock valve PVLP. The maximum values recommended to avoid interaction can be read in the following table.

The figures in the table have been calculated according to the following expressions:

- $PVLP \leq \! 150 \mbox{ bar: } LS_{A/B} \leq 0.8 \times P_{PVLP}$ _
- PVLP >150 bar: P_{PVLP} $LS_{A/B} \ge 30$ bar.

Max. pressure setting of LS_A and LS_B valves relative to PVLP shock valve

Setting	bar	32	50	63	80	100	125	140	150	160	175	190	210	230	240	250	265	280	300	320	350
pressure for PVL	[psi]	460	725	914	1160	1450	1813	2031	2175	2320	2838	2755	3045	3335	3480	3625	3843	4061	4351	4641	5075
Max. setting	bar	-	40	50	64	80	100	112	120	130	145	160	180	200	210	220	235	250	270	290	320
pressure for LS _{A/B}	[psi]	-	580	720	930	1160	1450	1625	1740	1885	2100	2320	2610	2900	3045	3190	3408	3625	3915	4205	4641
Min. setting	bar										3	0									
pressure for LSA/B	[psi]										43	35									

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information Order Specification

Order Specification

PVG 32 Specification Sheet

Subsidiary/Dealer	PVG No.	
Customer	Customer No.	
Application	Revision No.	

Function	A-Port	0	157B		157B		B-P	ort
			p =	bar	157B			
	a 157B	1	157B		157B	13	157B	С
	b 157B		LS _A	bar	LS _B	bar	157B	b
	a 157B	2	157B		157B	13	157B	С
	b 157B		LS _A	bar	LSB	bar	157B	b
	a 157B	3	157B		157B	13	157B	С
	b 157B		LSA	bar	LS _B	bar	157B	b
	a 157B	4	157B		157B	13	157B	С
	b 157B		LS _A	bar	LS _B	bar	157B	b
	a 157B	5	157B		157B	13	157B	С
	b 157B		LS _A	bar	LS _B	bar	157B	b
	a 157B	6	157B		157B	13	157B	С
	b 157B		LS _A	bar	LS _B	bar	157B	b
	a 157B	7	157B		157B	13	157B	С
	b 157B		LS _A	bar	LS _B	bar	157B	b
	a 157B	8	157B		157B	13	157B	С
	b 157B		LS _A	bar	LS _B	bar	157B	b
	a 157B	9	157B		157B	13	157B	с
	b 157B		LS _A	bar	LS _B	bar	157B	b
	a 157B	10	157B		157B	13	157B	С
	b 157B		LS _A	bar	LSB	bar	157B	b
Remarks		11	157B					
		12	157B					
Filled in by							Date	

PHYD-PVG32-3

Note:

Separate specification pads with 50 sheets are available under the literature no. DKMH.PZ.570.D8.02 520L0515.

Order Specification

PVG 32 SAE Specification Sheet

Subsidiary/Dealer						PVG No.			
Customer						Customer No.			
Application						Revision No.			
Function		A-Port	0	157B		157B		B-Po	rt
				p =	psi	157B			
	а	157B	1	157B		157B	13	157B	
	b	157B		LS _A	psi	LS _B	psi	157B	
	а	157B	2	157B		157B	13	157B	
	b	157B		LS _A	psi	LS _B	psi	157B	
	а	157B	3	157B		157B	13	157B	
	b	157B		LS _A	psi	LS _B	psi	157B	
	а	157B	4	157B		157B	13	157B	
	b	157B		LSA	psi	LS _B	psi	157B	
	а	157B	5	157B		157B	13	157B	
	b	157B		LS _A	psi	LS _B	psi	157B	
	а	157B	6	157B		157B	13	157B	
	b	157B		LS _A	psi	LS _B	psi	157B	
	а	157B	7	157B		157B	13	157B	
	b	157B		LS _A	psi	LS _B	psi	157B	
	а	157B	8	157B		157B	13	157B	
	b	157B		LS _A	psi	LS _B	psi	157B	
	а	157B	9	157B		157B	13	157B	
	b	157B		LS _A	psi	LS _B	psi	157B	
	a	157B	10	157B		157B	13	157B	
	b	157B		LSA	psi	LS _B	psi	157B	
Remarks			11	157B					
			12	157B					

Filled in by

Date

PHYD-PVG32-3

SAUER
DANFOSSPVG 32 Proportional Valve
Technical Information Notes

Notes

SAUER PVG 32 Proportional Valve Technical Information Notes

Notes

Our Products

- Open circuit axial piston pumps
- Gear pumps and motors
- Fan drive systems
- Closed circuit axial piston pumps and motors
- Bent axis motors
- Hydrostatic transmissions
- Transit mixer drives
- Hydrostatic transaxles
- Electrohydraulics
- Integrated systems
- Microcontrollers and software
- PLUS+1[™] GUIDE
- Displays
- Joysticks and control handles
- Sensors
- Orbital motors
- Inverters
- Electrohydraulic power steering
- Hydraulic power steering
- Hydraulic integrated circuits (HIC)
- Cartridge valves
- Directional spool valves
- Proportional valves

Sauer-Danfoss Mobile Power and Control Systems Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Global Service Partners strategically located in all parts of the world.

Local address:

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239-6000 Fax: +1 515 239 6618

Sauer-Danfoss GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany Osaka 532-0004, Japan Phone: +49 4321 871-0 +49 4321 871 122 Fax.

Sauer-Danfoss ApS DK-6430 Nordborg, Denmark Phone: +45 7488 4444 +45 7488 4400 Fax:

Sauer-Danfoss-Daikin LTD. Shin-Osaka TERASAKI 3rd Bldg. 6F 1-5-28 Nishimiyahara, Yodogawa-ku Phone: +81 6 6395 6066 +81 6 6395 8585 Fax.